3,722 research outputs found

    Quantum Group Structure and Local Fields in the Algebraic Approach to 2D Gravity

    Get PDF
    This review contains a summary of work by J.-L. Gervais and the author on the operator approach to 2d gravity. Special emphasis is placed on the construction of local observables -the Liouville exponentials and the Liouville field itself - and the underlying algebra of chiral vertex operators. The double quantum group structure arising from the presence of two screening charges is discussed and the generalized algebra and field operators are derived. In the last part, we show that our construction gives rise to a natural definition of a quantum tau function, which is a noncommutative version of the classical group-theoretic representation of the Liouville fields by Leznov and Saveliev.Comment: 38 pages, LaTex file. Proceedings of the Vth International Conference on Mathematical Physics, Strings and Quantum gravity, Alushta, Ukraine 199

    Operator Coproduct-Realization of Quantum Group Transformations in Two Dimensional Gravity, I.

    Get PDF
    A simple connection between the universal RR matrix of Uq(sl(2))U_q(sl(2)) (for spins \demi and JJ) and the required form of the co-product action of the Hilbert space generators of the quantum group symmetry is put forward. This gives an explicit operator realization of the co-product action on the covariant operators. It allows us to derive the quantum group covariance of the fusion and braiding matrices, although it is of a new type: the generators depend upon worldsheet variables, and obey a new central extension of Uq(sl(2))U_q(sl(2)) realized by (what we call) fixed point commutation relations. This is explained by showing that the link between the algebra of field transformations and that of the co-product generators is much weaker than previously thought. The central charges of our extended Uq(sl(2))U_q(sl(2)) algebra, which includes the Liouville zero-mode momentum in a nontrivial way are related to Virasoro-descendants of unity. We also show how our approach can be used to derive the Hopf algebra structure of the extended quantum-group symmetry U_q(sl(2))\odot U_{\qhat}(sl(2)) related to the presence of both of the screening charges of 2D gravity.Comment: 33 pages, latex, no figure

    The Multivalued Free-Field Maps of Liouville and Toda Gravities

    Get PDF
    Liouville and Toda gravity theories with non-vanishing interaction potentials have spectra obtained by dividing the free-field spectra for these cases by the Weyl group of the corresponding A1A_1 or A2A_2 Lie algebra. We study the canonical transformations between interacting and free fields using the technique of intertwining operators, giving explicit constructions for the wavefunctions and showing that they are invariant under the corresponding Weyl groups. These explicit constructions also permit a detailed analysis of the operator-state maps and of the nature of the Seiberg bounds.Comment: 47 pages, plain Tex, 5 Postscript figures, uses epsf.tex. Repackaging to permit Postscript generation, no changes to pape

    Quantum Canonical Transformations revisited

    Full text link
    A preferred form for the path integral discretization is suggested that allows the implementation of canonical transformations in quantum theory.Comment: 8 pages, LaTe

    Lotka--Volterra Type Equations and their Explicit Integration

    Full text link
    In the present note we give an explicit integration of some two--dimensionalised Lotka--Volterra type equations associated with simple Lie algebras, other than the familiar AnA_n case, possessing a representation without branching. This allows us, in particular, to treat the first fundamental representations of ArA_r, BrB_r, CrC_r, and G2G_2 on the same footing.Comment: 3 pages LATEX fil

    Defectors cannot be detected during"small talk" with strangers.

    Get PDF
    To account for the widespread human tendency to cooperate in one-shot social dilemmas, some theorists have proposed that cooperators can be reliably detected based on ethological displays that are difficult to fake. Experimental findings have supported the view that cooperators can be distinguished from defectors based on "thin slices" of behavior, but the relevant cues have remained elusive, and the role of the judge's perspective remains unclear. In this study, we followed triadic conversations among unacquainted same-sex college students with unannounced dyadic one-shot prisoner's dilemmas, and asked participants to guess the PD decisions made toward them and among the other two participants. Two other sets of participants guessed the PD decisions after viewing videotape of the conversations, either with foreknowledge (informed), or without foreknowledge (naïve), of the post-conversation PD. Only naïve video viewers approached better-than-chance prediction accuracy, and they were significantly accurate at predicting the PD decisions of only opposite-sexed conversation participants. Four ethological displays recently proposed to cue defection in one-shot social dilemmas (arms crossed, lean back, hand touch, and face touch) failed to predict either actual defection or guesses of defection by any category of observer. Our results cast doubt on the role of "greenbeard" signals in the evolution of human prosociality, although they suggest that eavesdropping may be more informative about others' cooperative propensities than direct interaction

    Reparametrization Invariance of Path Integrals

    Full text link
    We demonstrate the reparametrization invariance of perturbatively defined one-dimensional functional integrals up to the three-loop level for a path integral of a quantum-mechanical point particle in a box. We exhibit the origin of the failure of earlier authors to establish reparametrization invariance which led them to introduce, superfluously, a compensating potential depending on the connection of the coordinate system. We show that problems with invariance are absent by defining path integrals as the epsilon-> 0 -limit of 1+ epsilon -dimensional functional integrals.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re289/preprint.htm

    Light-Cone Quantization of the Liouville Model

    Full text link
    We present the quantization of the Liouville model defined in light-cone coordinates in (1,1) signature space. We take advantage of the representation of the Liouville field by the free field of the Backl\"{u}nd transformation and adapt the approch by Braaten, Curtright and Thorn. Quantum operators of the Liouville field +ϕ\partial_{+}\phi, ϕ\partial_{-}\phi, egϕe^{g\phi}, e2gϕe^{2g\phi} are constructed consistently in terms of the free field. The Liouville model field theory space is found to be restricted to the sector with field momentum P+=PP_{+}=-P_{-}, P+>0P_{+}> 0 , which is a closed subspace for the Liouville theory operator algebra.Comment: 16 p, EFI-92-6

    Domain Walls in a FRW Universe

    Full text link
    We solve the equations of motion for a scalar field with domain wall boundary conditions in a Friedmann-Robertson-Walker (FRW) spacetime. We find (in agreement with Basu and Vilenkin) that no domain wall solutions exist in de Sitter spacetime for h = H/m >= 1/2, where H is the Hubble parameter and m is the scalar mass. In the general FRW case we develop a systematic perturbative expansion in h to arrive at an approximate solution to the field equations. We calculate the energy momentum tensor of the domain wall configuration, and show that the energy density can become negative at the core of the defect for some values of the non-minimal coupling parameter xi. We develop a translationally invariant theory for fluctuations of the wall, obtain the effective Lagrangian for these fluctuations, and quantize them using the Bunch-Davies vacuum in the de Sitter case. Unlike previous analyses, we find that the fluctuations act as zero-mass (as opposed to tachyonic) modes. This allows us to calculate the distortion and the normal-normal correlators for the surface. The normal-normal correlator decreases logarithmically with the distance between points for large times and distances, indicating that the interface becomes rougher than in Minkowski spacetime.Comment: 23 pages, LaTeX, 7 figures using epsf.tex. Now auto-generates P
    corecore