26 research outputs found

    Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement

    Full text link
    In many civil and geotechnical applications it is of interest to monitor the strain deep inside the structure; consequently, it is necessary to embed the sensors into the structure's material. Construction and geotechnical materials, such as concrete and soil, can be affected by local defects, e.g. cracks, air pockets and inclusions. To monitor these materials at a structural level it is necessary to use long-gauge sensors. As the sensor has to be embedded in the host material, its presence causes perturbation of the strain field and influences the accuracy of the strain measurement. The aim of this research was to identify the critical parameters that influence the accuracy of the strain measurement, to study how these parameters affect the accuracy, and to give recommendations for sensor users. The study was based on finite element analysis and all involved materials were assumed to have the MöhrCoulomb elastic, perfectly plastic behavior. A suitability of the numerical model for the analysis was verified using the experimental results of two cases reported in the literature and one on-site application. The study revealed that the most important parameters that influence the accuracy of the strain measurement are the goodness of interaction (strain transfer) between the host material and the anchor pieces of the sensor, the ratio between equivalent Young's modulus of the sensor and the Young's modulus of the host material, the radius of the anchor piece and the gauge length. The numerical model and parametric study are presented in detail along with practical recommendations. © 2012 IOP Publishing Ltd.The authors would like to thank the Spanish Ministry of Education, with support received under the National Program for Mobility of Researchers (O.M. EDU/1456/2010, ref. PR2010-0293) which enabled the joint work that made this study possible. The Streicker Bridge project was realized with help of Turner Construction Co., HNTB, AG Construction Corp., Vollers Excavating & Constr., SMARTEC SA, Micron Optics, Princeton Facilities, and staff and students of CEE department of Princeton University.Calderón García, PA.; Glisic, B. (2012). Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement. Measurement Science and Technology. (23):1-15. https://doi.org/10.1088/0957-0233/23/6/065604S11523Glišić, B., & Inaudi, D. (2007). Fibre Optic Methods for Structural Health Monitoring. doi:10.1002/9780470517819Ansari, F. (2007). Practical Implementation of Optical Fiber Sensors in Civil Structural Health Monitoring. Journal of Intelligent Material Systems and Structures, 18(8), 879-889. doi:10.1177/1045389x06075760Li, H.-N., Zhou, G.-D., Ren, L., & Li, D.-S. (2009). Strain Transfer Coefficient Analyses for Embedded Fiber Bragg Grating Sensors in Different Host Materials. Journal of Engineering Mechanics, 135(12), 1343-1353. doi:10.1061/(asce)0733-9399(2009)135:12(1343)Torres, B., Payá-Zaforteza, I., Calderón, P. A., & Adam, J. M. (2011). Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring. Engineering Structures, 33(2), 539-548. doi:10.1016/j.engstruct.2010.11.012Kesavan, K., Ravisankar, K., Parivallal, S., Sreeshylam, P., & Sridhar, S. (2010). Experimental studies on fiber optic sensors embedded in concrete. Measurement, 43(2), 157-163. doi:10.1016/j.measurement.2009.08.010Azenha, M., Faria, R., & Ferreira, D. (2009). Identification of early-age concrete temperatures and strains: Monitoring and numerical simulation. Cement and Concrete Composites, 31(6), 369-378. doi:10.1016/j.cemconcomp.2009.03.004Glisic, B. (2011). Influence of the gauge length on the accuracy of long-gauge sensors employed in monitoring of prismatic beams. Measurement Science and Technology, 22(3), 035206. doi:10.1088/0957-0233/22/3/035206Leng, J. S., Winter, D., Barnes, R. A., Mays, G. C., & Fernando, G. F. (2006). Structural health monitoring of concrete cylinders using protected fibre optic sensors. Smart Materials and Structures, 15(2), 302-308. doi:10.1088/0964-1726/15/2/009Calderón, P. A., Adam, J. M., Ivorra, S., Pallarés, F. J., & Giménez, E. (2009). Design strength of axially loaded RC columns strengthened by steel caging. Materials & Design, 30(10), 4069-4080. doi:10.1016/j.matdes.2009.05.014Adam, J. M., Ivorra, S., Pallarés, F. J., Giménez, E., & Calderón, P. A. (2009). Axially loaded RC columns strengthened by steel caging. Finite element modelling. Construction and Building Materials, 23(6), 2265-2276. doi:10.1016/j.conbuildmat.2008.11.014Adam, J. M., Ivorra, S., Pallares, F. J., Jiménez, E., & Calderón, P. A. (2008). Column–joint assembly in RC columns strengthened by steel caging. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 161(6), 337-348. doi:10.1680/stbu.2008.161.6.337Adam, J. M., Ivorra, S., Pallares, F. J., Giménez, E., & Calderón, P. A. (2009). Axially loaded RC columns strengthened by steel cages. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 162(3), 199-208. doi:10.1680/stbu.2009.162.3.199Johansson, M., & Gylltoft, K. (2001). Structural behavior of slender circular steel-concrete composite columns under various means of load application. Steel and Composite Structures, 1(4), 393-410. doi:10.12989/scs.2001.1.4.393Johansson, M., & Gylltoft, K. (2002). Mechanical Behavior of Circular Steel–Concrete Composite Stub Columns. Journal of Structural Engineering, 128(8), 1073-1081. doi:10.1061/(asce)0733-9445(2002)128:8(1073

    Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms

    Full text link
    This paper represents an economic optimization of buttressed earth-retaining walls. We explore the optimum solutions using a harmony search with an intensification stage through threshold accepting. The calibration of the resulting algorithm has been obtained as a result of several test runs for different parameters. A design parametric study was computed to walls in series from 4 to 16 m total height. The results showed different ratios of reinforcement per volume of concrete for three types of ground fill. Our main findings confirmed that the most sensitive variable for optimum walls is the wall-friction angle. The preference for wall-fill friction angles different to 0 in project design is confirmed. The type of fill is stated as the main key factor affecting the cost of optimum walls. The design parametric study shows that the soil foundation bearing capacity substantially affects costs, mainly in coarse granular fills (F1). In that sense, cost-optimum walls are less sensitive to the bearing capacity in mixed soils (F2) and fine soils of low plasticity (F3). Our results also showed that safety against sliding is a more influential factor for optimum buttressed walls than the overturning constraint. Finally, as for the results derived from the optimization procedure, a more suitable rule of thumb to dimension the footing thickness of the footing is proposed.This research was funded by the European Institute of Innovation and Technology under grant agreement no 20140262 Low Carbon Strategy in the Construction Industry (PGA_APED0094_2014-2.1-278-P066-10) and the Spanish Ministry of Economy and Competitiveness along with FEDER funding (Project BIA2014-56574-R).Molina Moreno, F.; García-Segura, T.; Martí Albiñana, JV.; Yepes, V. (2017). Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms. Engineering Structures. 134:205-216. https://doi.org/10.1016/j.engstruct.2016.12.042S20521613

    Flexural strengthening of RC continuous slab strips using NSM CFRP laminates

    Get PDF
    To assess the effectiveness of the near surface mounted (NSM) technique, in terms of load carrying and moment redistribution capacities, for the flexural strengthening of continuous reinforced concrete (RC) slabs, an experimental program was carried out. The experimental program is composed of three series of three slab strips of two equal span length, in order to verify the possibility of increasing the negative (at the intermediate support region) resisting bending moment in 25% and 50% and maintaining moment redistribution levels of 15%, 30% and 45%. Though the flexural resistance of the NSM strengthened sections has exceeded the target values, the moment redistribution was relatively low, and the increase of the load carrying capacity of the strengthened slabs did not exceed 25%. This experimental program is analyzed to highlight the possibilities of NSM technique for statically indeterminate RC slabs in terms of flexural strengthening effectiveness, moment redistribution and ductility performance. Using a FEM-based computer program, which predictive performance was appraised using the obtained experimental results, a high effective NSM flexural strengthening strategy is proposed, capable of enhancing the slab’s load carrying capacity and maintaining high levels of ductility.The study reported in this paper forms a part of the research program "CUTINEMO - Carbon fiber laminates applied according to the near surface mounted technique to increase the flexural resistance to negative moments of continuous reinforced concrete structures" supported by FCT, PTDC/ECM/73099/2006. The authors wish to acknowledge the support also provided by the S&P, Casais and Artecanter Companies. The first Author acknowledges the financial support of National Council for Scientific and Technological Development (CNPq) - Brazil, Ph.D. Grant no. 200953/2007-9. The second Author wishes to acknowledge the support provided by FCT, by means of the SFRH/BSAB/818/2008 and SFRH/BSAB/913/2009 sabbatical grants

    An experimental and analytical investigation of reinforced concrete beam-column joints strengthened with a range of CFRP schemes applied only to the beam

    Get PDF
    This paper investigates the experimental and analytical behaviour of beam-column joints that are subjected to a combination of torque, flexural and direct shear forces, where different Carbon Fibre Polymer (CFRP) strengthening wraps have been applied only to the beam. These wrapping schemes have previously been determined by the research community as an effective method of enhancing the torsional capacities of simply supported reinforced concrete beams. In this investigation, four 3/4-scale exterior beam-column joints were subjected to combined monotonic loading; three different beam wrapping schemes were employed to strengthen the beam region of the joint. The paper suggests a series of rational formulae, based on the space truss mechanism, which can be used to evaluate the joint shear demand of the beams wrapped in these various ways. Further, an iterative model, based on the average stress-strain method, has been introduced to predict joint strength. The proposed analytical approaches show good agreement with the experimental results. The experimental outcomes along with the adopted analytical methods reflect the consistent influence of the wrapping ratio, the interaction between the combined forces, the concrete strut capacity and the fibre orientation on the joint forces, the failure mode and the distortion levels. A large rise in the strut force resulting from shear stresses generated from this combination of forces is demonstrated and leads to a sudden-brittle failure. Likewise, increases in the beams’ main steel rebar strains are identified at the column face, again influenced by the load interactions and the wrapping systems used

    fib model code for concrete structures 2010

    No full text
    The fib Model Code 2010 is the most comprehensive code on concrete structures, including their complete life cycle: conceptual design, dimensioning, construction, conservation and dismantlement. It is expected to become an important document for both national and international code committees, practitioners and researchers
    corecore