25 research outputs found
Area-wide real-world test scenarios of poor visibility for safe development of automated vehicles
Introduction Automated vehicles in everyday real-world traffic are predicted to be developed soon (Gasser et al., Rechtsfolgen zunehmender Fahrzeugautomatisierung, Wirtschaftsverlag NW, Berichte der Bundesanstalt für Straßenwesen F83, 2012). New technologies such as advanced object detection and artificial intelligence (AI) that use machine or deep-learning algorithms will support meeting all the maneuvering challenges involved in different degrees of automation (Society of Automotive Engineers - SAE international, Levels of driving automation for on road vehicles, Warrendale, PA., 2014; National Highway Traffic Safety Administration – NHTSA, Preliminary statement of policy concerning automated vehicles, Washington, DC, 2018). For automated series production, these vehicles of course must be safe in real-world traffic under all weather conditions. Therefore, system validation, ethical aspects and testing of automated vehicle functions are fundamental basics for successfully developing, market launching, ethical and social acceptance. Method In order to test and validate critical poor visibility detection challenges of automated vehicles with reasonable expenditure, a first area-wide analysis has been conducted. Because poor visibility restricts human perception similar corresponding to machine perception it was based on a text analysis of 1.28 million area-wide police accident reports – followed by an in-depth case-by-case analysis of 374 identified cases concerning bad weather conditions (see chap. 1.3). For this purpose the first time ever a nationwide analysis included all police reports in the whole area within the state of Saxony from the year 2004 until 2014. Results Within this large database, 374 accidents were found due to perception limitations – caused by “rain”, “fog”, “snow”, “glare”/“blinding” and “visual obstruction” – for the detailed case-by-case investigation. All those challenging traffic scenarios are relevant for automated driving. They will form a key aspect for safe development, validation and testing of machine perception within automated driving functions. Conclusions This first area-wide analysis does not only rely on samples as in previous in-depth analyses. It provides relevant real-world traffic scenarios for testing of automated vehicles. For the first time this analysis is carried out knowing the place, time and context of each accident over the total investigated area of an entire federal state. Thus, the accidents that have been analyzed include all kinds of representative situations that can occur on motorways, highways, main roads, side streets or urban traffic. The scenarios can be extrapolated to include similar road networks worldwide. These results additionally will be taken into account for developing standards regarding early simulations as well as for the subsequent real-life testing. In the future, vehicle operation data and traffic simulations could be included as well. Based on these relevant real-world accidents culled from the federal accident database for Saxony, the authors recommend further development of internationally valid guidelines based on ethical, legal requirements and social acceptance.
Document type: Articl
A Computationally Efficient Model for Pedestrian Motion Prediction
We present a mathematical model to predict pedestrian motion over a finite horizon, intended for use in collision avoidance algorithms for autonomous driving. The model is based on a road map structure, and assumes a rational pedestrian behavior. We compare our model with the state-of-the art and discuss its accuracy, and limitations, both in simulations and in comparison to real data
A farewell to brake reaction times? Kinematics-dependent brake response in naturalistic rear-end emergencies
Driver braking behavior was analyzed using time-series recordings from naturalistic rear-end conflicts (116 crashes and 241 near-crashes), including events with and without visual distraction among drivers of cars, heavy trucks, and buses. A simple piecewise linear model could be successfully fitted, per event, to the observed driver decelerations, allowing a detailed elucidation of when drivers initiated braking and how they controlled it. Most notably, it was found that, across vehicle types, driver braking behavior was strongly dependent on the urgency of the given rear-end scenario’s kinematics, quantified in terms of visual looming of the lead vehicle on the driver’s retina. In contrast with previous suggestions of brake reaction times (BRTs) of 1.5 s or more after onset of an unexpected hazard (e.g., brake light onset), it was found here that braking could be described as typically starting less than a second after the kinematic urgency reached certain threshold levels, with even faster reactions at higher urgencies. The rate at which drivers then increased their deceleration (towards a maximum) was also highly dependent on urgency. Probability distributions are provided that quantitatively capture these various patterns of kinematics-dependent behavioral response. Possible underlying mechanisms are suggested, including looming response thresholds and neural evidence accumulation. These accounts argue that a naturalistic braking response should not be thought of as a slow reaction to some single, researcher-defined “hazard onset”, but instead as a relatively fast response to the visual looming cues that build up later on in the evolving traffic scenario
Simulation of real pre crash accident scenarios using German in-depth accident study (GIDAS)
The focus of the technical innovation in the automobile industry is currently changing to sensor based safety systems, which are operating in the pre-crash phase of an accident. To get more information about this pre-crash phase for real accidents a simulation of this phase using the GIDAS database is done. The basics for this simulation are geometrical information about the accident location and the exact accident data out of the GIDAS database. This aggregated information gives the possibility to simulate an exact motion for every accident participant, using MATLAB / SIMULINK, in the pre-crash phase. After the simulation the information about the geometrical positions, the velocities and maneuvers of the drivers to an individual TTC (time to collision) are available. With those results it is possible to develop new useful sensor geometries using pre-crash scatter plots or estimate the efficiency of implemented active safety systems in combination with sensor characteristics. This simulation can be done for every reconstructed accident included in the GIDAS database, so these results can represent a wide spread basis for the further development of active safety systems and sensor geometries and characteristic
Statistical driver model for accident simulation - Using a statistical driver model for benefit estimation of advanced safety systems with warning interfaces
The main focus of the benefit estimation of advanced safety systems with a warning interface by simulation is on the driver. The driver is the only link between the algorithm of the safety system and the vehicle, which makes the setup of a driver model for such simulations very important. This paper describes an approach for the use of a statistical driver model in simulation. It also gives an outlook on further work on this topic. The build-up process of the model suffices with a distribution of reaction times and a distribution of reaction intensities. Both were combined in different scenarios for every driver. Each scenario has then a specific probability to occur. To use the statistical driver model, every accident scene has to be simulated with each driver scenario (combinations of reaction times and intensities). The results of the simulations are then combined regarding the probabilities to occur, which leads to an overall estimated benefit of the specific system. The model works with one or more equipped participants and delivers a range for the benefit of advanced safety systems with warning interfaces
Statistical driver model for accident simulation - Using a statistical driver model for benefit estimation of advanced safety systems with warning interfaces
The main focus of the benefit estimation of advanced safety systems with a warning interface by simulation is on the driver. The driver is the only link between the algorithm of the safety system and the vehicle, which makes the setup of a driver model for such simulations very important. This paper describes an approach for the use of a statistical driver model in simulation. It also gives an outlook on further work on this topic. The build-up process of the model suffices with a distribution of reaction times and a distribution of reaction intensities. Both were combined in different scenarios for every driver. Each scenario has then a specific probability to occur. To use the statistical driver model, every accident scene has to be simulated with each driver scenario (combinations of reaction times and intensities). The results of the simulations are then combined regarding the probabilities to occur, which leads to an overall estimated benefit of the specific system. The model works with one or more equipped participants and delivers a range for the benefit of advanced safety systems with warning interfaces
Reconstruction of accidents based on 3D-geodata
Beside numerous information about vehicles injuries and environmental data the GIDAS database contains detailed reconstruction data. This data is calculated by a reconstruction engineer who handles about 1000 accidents per year. The spectrum of one reconstruction ranges from simple crossing accidents to complex run-off accidents with rollover events. Especially for complex accident scenarios there is a large effort to design the environment of the accident scene within PC-Crash ®. To reduce the reconstruction time by maintaining the high quality of reconstruction 3D-geodata can be useful. Geodata is available for nearly every area in Germany and can be used for a fast and detailed creation of complex accident environments. In combination with the accident sketch areal images of the accident scene can be created and the participants are implemented in the new-built 3D-reconstruction environment. As a consequence, the characteristics of the terrain can be considered within the reconstruction which is especially important for run-off accidents