40 research outputs found

    Preparation and characterization of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants and the effect of follow-up treatment with atmospheric pressure glow microdischarge

    Get PDF
    AbstractThe unique properties of gold nanoparticles (AuNPs) make them attractive for use in a number of fields, ranging from cosmetology to medicine. If AuNPs are to be widely used in industrial and medical applications, it is necessary to develop environmentally friendly methods for their synthesis. This can be accomplished by replacing the traditional chemical compounds for the reduction of the Au(III) ions to Au0 during AuNPs synthesis with natural plant extracts or with atmospheric pressure plasmas. Here, the properties of three aqueous plant extracts (Mentha piperita, Melissa officinalis, and Salvia officinalis) in the synthesis of AuNPs were compared and optimized under standardized conditions. The effects of the type of plant extract, the reaction temperature, and the precursor concentration on the production and size of the obtained AuNPs were examined using UV–Vis absorption spectrophotometry, dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It was observed that the size of the produced AuNPs was dependent on the aqueous plant extract used, and that under the optimized conditions, the aqueous leaf extract of M. piperita resulted in the production of AuNPs with the smallest volume-weighted diameter. Additionally, the bioactive compounds present in each extract were studied. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) indicated that different chemical groups could be involved in the AuNPs synthesis, while a Folin–Ciocalteu (FC) assay revealed a clear role of phenolic compounds. Finally, it was shown that the treatment of the synthesized AuNPs, which were obtained after bioreduction using the plant extracts, with atmospheric pressure glow microdischarge (μAPGD) resulted in their agglomeration and enlargement

    Pervasive RNA Regulation of Metabolism Enhances the Root Colonization Ability of Nitrogen-Fixing Symbiotic α-Rhizobia

    Get PDF
    The rhizosphere and rhizoplane are nutrient-rich but selective environments for the root microbiome. Here, we deciphered a posttranscriptional network regulated by the homologous trans-small RNAs (sRNAs) AbcR1 and AbcR2, which rewire the metabolism of the nitrogen-fixing α-rhizobium Sinorhizobium meliloti during preinfection stages of symbiosis with its legume host alfalfa. The LysR-type regulator LsrB, which transduces the cell redox state, is indispensable for AbcR1 expression in actively dividing bacteria, whereas the stress-induced transcription of AbcR2 depends on the alternative σ factor RpoH1. MS2 affinity purification coupled with RNA sequencing unveiled exceptionally large and overlapping AbcR1/2 mRNA interactomes, jointly representing ⁓6% of the S. meliloti protein-coding genes. Most mRNAs encode transport/metabolic proteins whose translation is silenced by base pairing to two distinct anti-Shine Dalgarno motifs that function independently in both sRNAs. A metabolic model-aided analysis of the targetomes predicted changes in AbcR1/2 expression driven by shifts in carbon/nitrogen sources, which were confirmed experimentally. Low AbcR1/2 levels in some defined media anticipated overexpression growth phenotypes linked to the silencing of specific mRNAs. As a proof of principle, we confirmed AbcR1/2-mediated downregulation of the l-amino acid AapQ permease. AbcR1/2 interactomes are well represented in rhizosphere-related S. meliloti transcriptomic signatures. Remarkably, a lack of AbcR1 specifically compromised the ability of S. meliloti to colonize the root rhizoplane. The AbcR1 regulon likely ranks the utilization of available substrates to optimize metabolism, thus conferring on S. meliloti an advantage for efficient rhizosphere/rhizoplane colonization. AbcR1 regulation is predicted to be conserved in related α-rhizobia, which opens unprecedented possibilities for engineering highly competitive biofertilizers

    Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti

    Get PDF
    The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,500 genes with 192 carbon substrates. Growth of S. meliloti is modelled in three ecological niches (bulk soil, rhizosphere and nodule) with a focus on the role of each of its three replicons. We observe clear metabolic differences during growth in the tested ecological niches and an overall reprogramming following niche switching. In silico examination of the inferred fitness of gene deletion mutants suggests that secondary replicons evolved to fulfil a specialized function, particularly host-associated niche adaptation. Thus, genes on secondary replicons might potentially be manipulated to promote or suppress host interactions for biotechnological purposes

    Fermented juices as reducing and capping agents for the biosynthesis of size-defined spherical gold nanoparticles

    Get PDF
    Gold nanoparticles (AuNPs) are of scientific and industrial significance; however, the traditional synthesis methods employ toxic compounds. Hence, non-toxic and environmentally friendly AuNPs synthesis methods are of special interest. Here, AuNPs were produced using four solutions of fermented grape juices. UV/Vis absorption spectrophotometry and transmission electron microscopy indicated that AuNPs synthesized with a solution based on semi-sweet red grapes were mostly spherical with narrow size distribution (average diameter of 82.1 ± 36.2 nm). AuNPs of similar spherical morphology but smaller size were obtained using a solution based on semi-dry red grapes (57.1 ± 16.4 nm). A large variety of AuNPs shapes and broader size distribution were produced when solutions based on semi-sweet or dry white grapes were applied. In this case, the average sizes of the AuNPs were 271.6 ± 130.2 nm and 76.0 ± 47.2 nm, respectively. Using energy dispersive X-ray spectroscopy, Au, C, and O were detected, confirming formation of biogenic AuNPs in all cases. Mie theory calculations for AuNPs synthesized with the aid of solutions based on red grapes suggest that their optical properties are different and best suited for distinct downstream applications. Attenuated total reflectance Fourier transform infrared spectroscopy, the Folin-Ciocalteu assay, and the Bertrand's method were used to examine bioactive compounds present in the solutions applied for synthesis. Phenolics, and to a lesser extent reducing sugars, were identified as likely playing a significant role in reduction and stabilization of the AuNPs. These results display the great potential of these solutions for green synthesis of size defined AuNPs, and illustrate that different grape varieties may be used to obtain AuNPs with unique properties. Keywords: Nanostructures, Bioreduction process, Phenolics, Reducing sugars, Mie scatterin

    Genomic and Biotechnological Characterization of the Heavy-Metal Resistant, Arsenic-Oxidizing Bacterium Ensifer sp. M14

    No full text
    Ensifer (Sinorhizobium) sp. M14 is an efficient arsenic-oxidizing bacterium (AOB) that displays high resistance to numerous metals and various stressors. Here, we report the draft genome sequence and genome-guided characterization of Ensifer sp. M14, and we describe a pilot-scale installation applying the M14 strain for remediation of arsenic-contaminated waters. The M14 genome contains 6874 protein coding sequences, including hundreds not found in related strains. Nearly all unique genes that are associated with metal resistance and arsenic oxidation are localized within the pSinA and pSinB megaplasmids. Comparative genomics revealed that multiple copies of high-affinity phosphate transport systems are common in AOBs, possibly as an As-resistance mechanism. Genome and antibiotic sensitivity analyses further suggested that the use of Ensifer sp. M14 in biotechnology does not pose serious biosafety risks. Therefore, a novel two-stage installation for remediation of arsenic-contaminated waters was developed. It consists of a microbiological module, where M14 oxidizes As(III) to As(V) ion, followed by an adsorption module for As(V) removal using granulated bog iron ores. During a 40-day pilot-scale test in an abandoned gold mine in Zloty Stok (Poland), water leaving the microbiological module generally contained trace amounts of As(III), and dramatic decreases in total arsenic concentrations were observed after passage through the adsorption module. These results demonstrate the usefulness of Ensifer sp. M14 in arsenic removal performed in environmental settings

    <i>Brachypodium</i> Antifreeze Protein Gene Products Inhibit Ice Recrystallisation, Attenuate Ice Nucleation, and Reduce Immune Response

    No full text
    Antifreeze proteins (AFPs) from the model crop, Brachypodium distachyon, allow freeze survival and attenuate pathogen-mediated ice nucleation. Intriguingly, Brachypodium AFP genes encode two proteins, an autonomous AFP and a leucine-rich repeat (LRR). We present structural models which indicate that ice-binding motifs on the ~13 kDa AFPs can “spoil” nucleating arrays on the ~120 kDa bacterial ice nucleating proteins used to form ice at high sub-zero temperatures. These models are consistent with the experimentally demonstrated decreases in ice nucleating activity by lysates from wildtype compared to transgenic Brachypodium lines. Additionally, the expression of Brachypodium LRRs in transgenic Arabidopsis inhibited an immune response to pathogen flagella peptides (flg22). Structural models suggested that this was due to the affinity of the LRR domains to flg22. Overall, it is remarkable that the Brachypodium genes play multiple distinctive roles in connecting freeze survival and anti-pathogenic systems via their encoded proteins’ ability to adsorb to ice as well as to attenuate bacterial ice nucleation and the host immune response

    Cold Acclimation in Brachypodium Is Accompanied by Changes in Above-Ground Bacterial and Fungal Communities

    No full text
    Shifts in microbiota undoubtedly support host plants faced with abiotic stress, including low temperatures. Cold-resistant perennials prepare for freeze stress during a period of cold acclimation that can be mimicked by transfer from growing conditions to a reduced photoperiod and a temperature of 4 &deg;C for 2&ndash;6 days. After cold acclimation, the model cereal, Brachypodium distachyon, was characterized using metagenomics supplemented with amplicon sequencing (16S ribosomal RNA gene fragments and an internal transcribed spacer region). The bacterial and fungal rhizosphere remained largely unchanged from that of non-acclimated plants. However, leaf samples representing bacterial and fungal communities of the endo- and phyllospheres significantly changed. For example, a plant-beneficial bacterium, Streptomyces sp. M2, increased more than 200-fold in relative abundance in cold-acclimated leaves, and this increase correlated with a striking decrease in the abundance of Pseudomonas syringae (from 8% to zero). This change is of consequence to the host, since P. syringae is a ubiquitous ice-nucleating phytopathogen responsible for devastating frost events in crops. We posit that a responsive above-ground bacterial and fungal community interacts with Brachypodium&rsquo;s low temperature and anti-pathogen signalling networks to help ensure survival in subsequent freeze events, underscoring the importance of inter-kingdom partnerships in the response to cold stress

    Inter-replicon Gene Flow Contributes to Transcriptional Integration in the Sinorhizobium meliloti Multipartite Genome

    No full text
    Integration of newly acquired genes into existing regulatory networks is necessary for successful horizontal gene transfer (HGT). Ten percent of bacterial species contain at least two DNA replicons over 300 kilobases in size, with the secondary replicons derived predominately through HGT. The Sinorhizobium meliloti genome is split between a 3.7 Mb chromosome, a 1.7 Mb chromid consisting largely of genes acquired through ancient HGT, and a 1.4 Mb megaplasmid consisting primarily of recently acquired genes. Here, RNA-sequencing is used to examine the transcriptional consequences of massive, synthetic genome reduction produced through the removal of the megaplasmid and/or the chromid. Removal of the pSymA megaplasmid influenced the transcription of only six genes. In contrast, removal of the chromid influenced expression of ∼8% of chromosomal genes and ∼4% of megaplasmid genes. This was mediated in part by the loss of the ETR DNA region whose presence on pSymB is due to a translocation from the chromosome. No obvious functional bias among the up-regulated genes was detected, although genes with putative homologs on the chromid were enriched. Down-regulated genes were enriched in motility and sensory transduction pathways. Four transcripts were examined further, and in each case the transcriptional change could be traced to loss of specific pSymB regions. In particularly, a chromosomal transporter was induced due to deletion of bdhA likely mediated through 3-hydroxybutyrate accumulation. These data provide new insights into the evolution of the multipartite bacterial genome, and more generally into the integration of horizontally acquired genes into the transcriptome
    corecore