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Abstract The unique properties of gold nanoparticles (AuNPs) make them attractive for use in a

number of fields, ranging from cosmetology to medicine. If AuNPs are to be widely used in indus-

trial and medical applications, it is necessary to develop environmentally friendly methods for their

synthesis. This can be accomplished by replacing the traditional chemical compounds for the reduc-

tion of the Au(III) ions to Au0 during AuNPs synthesis with natural plant extracts or with atmo-

spheric pressure plasmas. Here, the properties of three aqueous plant extracts (Mentha piperita,

Melissa officinalis, and Salvia officinalis) in the synthesis of AuNPs were compared and optimized

under standardized conditions. The effects of the type of plant extract, the reaction temperature,

and the precursor concentration on the production and size of the obtained AuNPs were examined

using UV–Vis absorption spectrophotometry, dynamic light scattering (DLS), scanning electron

microscopy (SEM), and transmission electron microscopy (TEM). It was observed that the size
e plants
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of the produced AuNPs was dependent on the aqueous plant extract used, and that under the

optimized conditions, the aqueous leaf extract of M. piperita resulted in the production of AuNPs

with the smallest volume-weighted diameter. Additionally, the bioactive compounds present in each

extract were studied. Attenuated total reflection Fourier transform infrared spectroscopy

(ATR-FTIR) indicated that different chemical groups could be involved in the AuNPs synthesis,

while a Folin–Ciocalteu (FC) assay revealed a clear role of phenolic compounds. Finally, it was

shown that the treatment of the synthesized AuNPs, which were obtained after bioreduction using

the plant extracts, with atmospheric pressure glow microdischarge (lAPGD) resulted in their

agglomeration and enlargement.

� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since the early 20th century, the synthesis of gold nanoparticles

(AuNPs) has fascinated the scientific community due to their unique

physiochemical and biological properties (Link and El-Sayed, 1999;

Daniel and Astruc, 2004). It is because of these special properties that

many research groups have attempted to use AuNPs to address soci-

etally important problems in a range of fields, including medicine

(Cole et al., 2015), cosmetology (Saha et al., 2011), biology (Murphy

et al., 2008), clinical chemistry (Jain, 2007), and pharmacology

(Hainfeld et al., 2008). As such, it is imperative to develop improved

and environmentally friendly methods for the synthesis of AuNPs in

order to maximize their potential benefits to society. Over the years,

there has been a marked improvement in the ability to synthesize

AuNPs. However, conventional methods normally involve the use of

toxic compounds that are not appropriate for long-term environmental

sustainability.

The critical step in the synthesis of AuNPs is the reduction of the

Au(III) ions to their metallic form (Au0). This is most commonly

carried out with a chemical reduction method using various chemical

reducing agents such as citric acid (Das et al., 2012), borohydride

(Olesiak-Banska et al., 2012), or tetrafluoroborate (Wei and Liu,

2011). In addition, chemical stabilizers, e.g., polyvinylpyrolidone

(Wei and Liu, 2011; Dzimitrowicz et al., 2015a), poly(vinyl alcohol)

(Dzimitrowicz et al., 2015a; Pimpang and Choopun, 2011), or sodium

dodecyl sulfate (Saito et al., 2009), are added to the reaction mixtures

to prevent uncontrolled growth and sedimentation of AuNPs. The

inclusion of the reducing agents and/or stabilizers not only decreases

the purity of the obtained AuNPs, but these compounds can be

environmentally hazardous. To overcome this limitation, alternative

green reduction methods have been developed to replace the chemical

reduction step in the AuNP synthesis. These methods involve, for

example, the reduction of the Au(III) ions either with non-

equilibrium atmospheric pressure plasmas (APPs) (Yan et al., 2014;

Heo and Lee, 2011; Bratescu et al., 2011) or with phytochemical com-

pounds (natural plant extracts) (Khalil et al., 2012; Pasca et al., 2014;

Joseph and Mathew, 2014; Rajathi et al., 2014; Alam et al., 2014;

Basavegowda et al., 2014; Sharma et al., 2014; MubarakAli et al.,

2011; Fierascu et al., 2010).

Two groups of plasma-based reduction methods have been devel-

oped for the synthesis of AuNPs. In the first group, APP is generated

directly in the liquid between two metallic electrodes that are dipped

into solutions containing the AuNPs precursor (Bratescu et al., 2011;

Hieda et al., 2008; Cho et al., 2011). In the second group, AuNPs are

produced at the interface of the APP gaseous microjets with the liquids

containing HAuCl4 (Dzimitrowicz et al., 2015a,b; Tochikubo et al.,

2014; Shirai et al., 2014). The most recent of these methods

(Dzimitrowicz et al., 2015a,b), and the only one to employ a

continuous-flow mode protocol, uses a low power, direct current atmo-

spheric pressure glow microdischarge (dc-lAPGD) for the reduction of

the AuNPs precursor. Briefly, in this method, the Au(III) ions are
cz, A. et al., Preparation and characteriz
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reduced in a dc-lAPGD based reactor that consists of an Ar nozzle

microjet functioning as the anode and a flowing liquid cathode.

An alternative green chemistry method involves the reduction of

the Au(III) ions by natural compounds present in the plant extracts

(Khalil et al., 2012; Pasca et al., 2014). The reduction via natural com-

pounds is advantageous over the traditional chemical reduction due to

the purity, biocompatibility, and environmental compatibility of the

produced AuNPs (Pasca et al., 2014; Joseph and Mathew, 2014;

Alam et al., 2014). A wide variety of natural plant extracts have been

tested in reference to their ability to synthesize AuNPs (Pasca et al.,

2014; Joseph and Mathew, 2014; Rajathi et al., 2014; Alam et al.,

2014; Basavegowda et al., 2014; Sharma et al., 2014). In order to utilize

the natural plant extracts for the AuNPs synthesis at an industrial

scale, the target plants should be easy to grow with a high yield, and

cheap to cultivate and harvest, while the produced AuNPs should be

of a sufficiently high quality. The members of the Lamiaceae family

of the flowering plants, which includes 7 sub-families and over 7000

plant species, provide many potential candidates that meet the above

characteristics. Additionally, previous studies have illustrated the

potential of two species of the Nepetoideae subfamily, Mentha piperita

and Salvia officinalis, to produce the high quality AuNPs (MubarakAli

et al., 2011; Fierascu et al., 2010). For example, MubarakAli et al.

(2011) found that a mixture of the M. piperita leaf extract and a

HAuCl4 solution incubated above 28 �C for 24 h led to the synthesis

of the spherical AuNPs with a dimension of �150 nm. The obtained

AuNPs exhibited a strong antibacterial activity against Escherichia coli

and Straphylococcus aureus (MubarakAli et al., 2011). Fierascu et al.

(2010) compared the influence of the extracts of S. officinalis leaves

and flowers, as well as the effect of irradiation by sunlight, on the

efficiency of the AuNPs production. The best conditions for the

AuNPs synthesis were established to be when the flower extract was

used and with exposure of the reaction mixtures to sunlight irradiation

(Fierascu et al., 2010). However, to the best of our knowledge, no

study has compared the AuNPs synthesis properties of the extracts

from different plants of the Lamiaceae family under standardized

conditions.

The main objective of the present work was to examine the AuNPs

synthesis capabilities of leaf extracts from three members of the

Lamiaceae family under controlled conditions, and determine which

one shows the greatest promise for the further study. The tested plants

were M. piperita, S. officinalis, and Melissa officinalis, a third member

of the Nepetoideae subfamily that has not previously been examined

in relation to the synthesis of NPs. The effect of these three extracts

and the reaction conditions on the optical and granulometric properties

of the obtained AuNPs, as well as their synthesis rate, was determined.

Furthermore, the aqueous leaf extracts were characterized to gain clues

into which compounds function as the bioactive components for the

biosynthesis of AuNPs, and then the specific role of the phenolic

compounds was further examined. Finally, it was examined whether

the application of dc-lAPGD to the AuNPs synthesized with the natu-

ral plant extracts would result in a reduction in the size of the AuNPs.
ation of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants
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Figure 1 Schematic of the dc-lAPGD system used in this study.

The setup of the dc-lAPCG system is shown, and the relevant

aspects are labeled.

Please check the inserted running head, and correct if necessary. 3
2. Material and methods

2.1. Preparation of aqueous plant extracts

The leaves of three plants, M. officinalis (FLOS, Mokrsko,
Poland),S. officinalis (FLOS,Mokrsko, Poland) andM.piperita

(KAWON, Gostyn, Poland), were washed and then air-dried.
The plant material (leaves) was homogenized in a mortar and
then sieved using a 3.2 mm sieve. In order to obtain 1% (m/v)

aqueous plant leaf extracts, portions (1.0 g) of the plant powders
were mixed with 100 mL of double distilled water (DDW) in a
250 mLbeaker, and then heated to boil for 10 min. The resulting
aqueous plant solutionswere filteredwith qualitative filter paper

disks (Munktell, grade 388). Finally, the filtrates of the aqueous
plant extracts were stored in the dark at 4 �C until use.

2.2. Biosynthesis of AuNPs with plant aqueous extracts

For the biosynthesis of AuNPs, 10.0 mL of 1% (v/v) filtered
plant extracts (M. piperita, S. officinalis, or M. officinalis) in

DDW were directly mixed with either 2.5, 1.1, or 0.53 mL of
a 1000 mg L�1 Au(III) stock solution to produce final Au(III)
concentrations of 200, 100, or 50 mg L�1, respectively. The

stock solution of Au(III) was obtained by dissolving an appro-
priate amount of HAuCl4 � 4H2O (Avantor Performance
Materials, Gliwice, Poland) in DDW. The influence of the
temperature of the reaction mixtures and the concentration of

Au(III) on the size of the biosynthesized AuNPs and their size
distribution were investigated by mixing the pre-warmed aque-
ous plant extracts with solutions of Au(III). Then, the reaction

mixtures were incubated for 24 h at 20, 40, or 60 �C in a water
bath. To monitor the influence of the incubation time, samples
containing the produced AuNPs were taken following 0.167,

0.333, and 24 h of incubation and subjected to measurements
by UV–Vis absorption spectrophotometry.

2.3. The design and operation of the dc-lAPGD system

To examine any potential interaction effects of dc-lAPGD
with plant extract mediated reduction, the AuNPs biosynthe-
sized with the plant aqueous extracts were treated by

dc-lAPGD in a miniature reactor. This discharge system
consisted of an Ar nozzle microjet as the anode and a flowing
liquid cathode (Fig. 1). The solution of the flowing liquid cath-

ode consisted of the products of the 1% (m/v) plant extract
and 50 mg L�1 Au(III) ions following the 24 h incubation at
20 �C. The microdischarge was ignited by a Pt wire in the

gap between electrodes, and was sustained by applying a
voltage of 1300 V to both electrodes. This resulted in a current
flow of 45 mA. The flow rate of the solutions of the flowing
liquid cathode was 3 mL min�1, and the flow rate of the Ar

nozzle microjet-supporting gas was 120 sccm. Following the
passage of the reaction mixtures through the miniature reactor,
the product was collected in small vials for further analysis.

2.4. Characterization of AuNPs

2.4.1. UV–Vis absorption spectrophotometry

The bioreduction of the Au(III) ions to Au0 was monitored by
UV–Vis absorption spectrophotometry using a Specord 210
Please cite this article in press as: Dzimitrowicz, A. et al., Preparation and characteriz
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Plus (Analytik Jena, Jena, Germany) instrument. The absorp-
tion spectra were acquired in the range of 400–1100 nm with a

step of 0.1 nm and a scanning speed of 20 nm s�1. The mea-
surements were carried out �10 min after the bioreduction
process was completed. The UV–Vis absorption spectrum of

DDW was used as the background reference. Additionally,
the UV–Vis absorption spectra of the aqueous plant extracts
were collected and compared with the spectra obtained for
the solutions containing the biosynthesized AuNPs. To moni-

tor the formation of AuNPs over the time, the absorbance at a
wavelength of 530 nm (the position of the localized surface
plasmon resonance [LSPR] band) was measured every 0.2 s

for 180 s, with an integration time of 0.04 s.

2.4.2. Dynamic light scattering

For the determination of the size of the obtained AuNPs, they

were purified by centrifugation at 12,000 rpm for 10 min in a
MPW-350 centrifuge (MPW Medical Instruments, Warsaw,
Poland). The size by volume of the AuNPs was determined by

dynamic light scattering (DLS), using a Nicomp 380ZLS (Parti-
cle Sizing Systems, Port Richey, FL,USA) particle sizing system
equipped with a green laser excitation source operating at

532 nm/50 mW. A frequency of the photon counting was set
at 200 kHz, while a scattering angle was fixed at 90�. The tem-
perature of the measured media was within 24–27 �C. Dispos-

able poly(methyl methacrylate) (PMMA) square cuvettes
(ID of 1.0 cm) were used. The hydrodynamic diameter of the
AuNPs was calculated based on the Stokes–Einstein equation
(Huang et al., 2014), considering water as a continuous phase

(the water viscosity was within 0.911–0.852 mPa s, and the
diffusion coefficient of NPs was within 6.89 � 10�9–
5.30 � 10�8 cm2 s�1). A Nicomp CONTIN mode was used for

analysis, and up to three modes could be calculated; volume
weighting has been used for work-up of results.

2.4.3. Scanning electron microscopy

Scanning electron microscopy (SEM) was used to confirm the

production of AuNPs and examine the morphology of the
ation of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants
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obtained AuNPs. SEM images were acquired using a
JSM-6610LVnx (Jeol, Tokyo, Japan) instrument that was
equipped with an Aztec Energy (UK) integrated X-ray energy

dispersive spectrometer (EDS) and a high-resolution CCD
camera. The solutions with the purified AuNPs were dispersed
in DDW using a vortex and placed on a carbon sticky conduc-

tive tape, and the solutions allowed to be evaporated. SEM
images were recorded at magnifications from 15,000� to
18,000�. An accelerating voltage of 20–25 kV was applied.

2.4.4. Transmission electron microscopy and X-ray energy
dispersive spectrometry

The size, the particle shape distribution, and the elemental

composition of the AuNPs were acquired by transmission
electron microscopy (TEM) and energy dispersive spectrome-
try (EDS) using a FEI Tecnai G220 X-TWIN instrument

(FEI, Hillsboro, Oregon, USA) supported with an EDAX
X-ray microanalyzer (FEI). For this purpose, one drop of
the Au suspensions was put on a Cu mesh grid and allowed
to dry. Due to the high resolution of TEM, it was not neces-

sary to purify the AuNPs before measurements by centrifuga-
tion. The AuNPs size was determined by calculating the
diameter of the spherical NPs, the height of the triangular

NPs, the length of nanorods, and the diameter of nanostars,
and was based on 60 measurements.

2.5. Qualitative and quantitative composition of the aqueous
plant extracts

2.5.1. Attenuated total reflection Fourier transform infrared
(ATR-FTIR) spectroscopy

The qualitative composition of the leaf extracts of M. piperita,
S. officinalis, and M. officinalis, both with and without

HAuCl4 and in reference to the presence of different classes
of the organic compounds was assessed using ATR-FTIR.
The ATR-FTIR spectra were acquired using a Vertex 70v

(Bruker, Germany) Fourier transform infrared spectrometer
equipped with a diamond ATR cell. The absorption spectra
were measured at room temperature in the range of 4000–

400 cm�1 for the pure aqueous plant extracts as well as for
the post-reaction mixtures, i.e., after the addition of the solu-
tions of HAuCl4.

2.5.2. Folin–Ciocalteu assay

The total concentration of the phenolic compounds in the
aqueous plant extracts, as well as the post-reaction mixtures,

was determined with UV–Vis absorption spectrophotometry
using the Folin–Ciocalteu (F–C) assay (Stratil et al., 2006).
In this assay, 2.5 mL of a F–C reagent solution (Sigma-
Aldrich, Poznan, Poland), which contained a mixture of

phosphomolybdate and phosphotungstate (3H2O � P2O5 �
14WO3 � 4MoO3 � 10H2O), was added to 0.5 mL of the solu-
tions of each plant leaf extract. The mixtures were incubated

for 2 min at room temperature, following which 2.0 mL of a
7.5% (m/v) Na2CO3 solution was added. The resulting mix-
tures were subsequently incubated for 15 min at 50 �C and

finally cooled in a water–ice bath for 4 min. The absorbance
of the solutions at 734 nm was immediately measured. Gallic
acid (GA) was used as a standard, and the calibration solu-

tions contained from 30 to 150 mg L�1 of GA. The final results
are expressed as GA equivalents.
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3. Results

3.1. All three aqueous plant extracts can successfully be
employed in AuNP biosynthesis

To initially test whether the aqueous plant extracts were

capable of synthesizing the AuNPs, HAuCl4 � 4H2O solutions
(1000 mg L�1 of Au) were added to freshly prepare 1.0% (m/v)
aqueous plants extracts (M. piperita, S. officinalis, or M. offic-

inalis) to a final concentration of 200 mg L�1, and the mixtures
were incubated at 20 �C for 24 h. Following incubation, a
color change of the post-reaction mixtures from dark yellow
into ruby red and bluish was observed. Such a color shift

was observed for the aqueous extracts of all studied plants
and was indicative of the biosynthesis of AuNPs
(Dzimitrowicz et al., 2015a; Bhambure et al., 2009). This

confirmed that the extracts of all three studied plants could
successfully reduce the Au(III) ions to Au0. The color change
was likely a consequence of the appearance of the LSPR

absorption band for the biosynthesized AuNPs, which has a
characteristic maximum in the range within 520–580 nm
(Pal and Kryschi, 2015).

To confirm the visual observations, UV–Vis absorption

spectrophotometry was used to measure the position of the
maximum of the LSPR band. Representative absorption spec-
tra for the AuNPs synthesized from each extract are shown in

Fig. 2. A LSPR band between 520 and 580 nm was observed in
each spectra, which further supports the production of AuNPs.
A wide plasmonic band was detected in the samples synthe-

sized from the M. piperita aqueous leaf extract, which indi-
cated the production of the uniform and spherical AuNPs.
In contrast, two bands were seen in each of the samples synthe-

sized by the S. officinalis or M. officinalis extracts; a LSPR
band for the spherical AuNPs and a longitudinal plasmon
resonance band indicative of the nanostructures of different
shapes, e.g. triangles, rods, or stars.

The AuNPs samples were examined with SEM to confirm
the presence of AuNPs. As shown in Fig. 3, the non-
aggregated grains of AuNPs were synthesized regardless of

which aqueous leaf extract was used. However, due to the lim-
ited resolution of SEM, no clear differences in the size or shape
of the obtained AuNPs could be observed. For this purpose,

TEM was used. Under the given conditions (200 mg L�1 Au
(III) and 20 �C), the smallest AuNPs were formed using the
S. officinalis extract (Fig. 4). Their average size was 15.1
± 10.2 nm, and they were mostly spherical (52%) or triangu-

lar (27%), although different shapes such as stars (16%), and
rods (5%) were also observed for them. A variety of particle
shapes were also noticed for the AuNPs synthesized with the

M. officinalis extract (Fig. 5). The AuNPs had an average size
of 19.5 ± 24.3 nm, with spherical (60%), triangular (23%),
star shaped (13%), and rod shaped (3%) structures seen. When

the M. piperita extract was used for the AuNPs synthesis, the
AuNPs were primarily spherical and had a higher average size
and size distribution, i.e. 55.1 ± 48.4 nm (Fig. 6), than those

obtained in the other cases.
The EDS measurements were performed to examine the

elemental composition of the nanoparticles and their
surrounding (Fig. 7). The results unambiguously confirmed

the presence of metallic Au. In all aqueous leaf extracts there
were found small amounts of C, Cl, K, and Ca. These elements
ation of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants
ischarge. Arabian Journal of Chemistry (2016), http://dx.doi.org/10.1016/j.
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Figure 2 UV–Vis spectra of AuNPs produced at 20 �C and

200 mg L�1 using the aqueous plant extracts. Spectra are shown

for AuNPs synthesized using either (a) M. piperita, (b) M.

officinalis, or (c) S. officinalis.

Please check the inserted running head, and correct if necessary. 5
were present due to the elemental composition of the extracts,

from which the AuNPs were not purified prior to EDS analy-
sis. The presence of Cu is due to the Cu gird, on which the
samples were analyzed. Thus, all measurement techniques
Please cite this article in press as: Dzimitrowicz, A. et al., Preparation and characteriz
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confirmed that the aqueous leaf extracts of M. piperita,
S. officinalis, and M. officinalis can be effectively used in the
biosynthesis of the AuNPs.

3.2. Effects of reaction parameters on the size of the produced

AuNPs

To determine the optimal conditions for the biosynthesis of the
AuNPs using the aqueous plant extracts, the effect of the reac-
tion temperature, the length of incubation, and the concentra-

tion of Au(III) ions were examined in reference to the position
of the maximum of the LSPR absorption band. According to
the Mie scattering theory, the size of NPs is correlated with the

extent of the red-shift of the LSPR absorption band (Hao and
Schatz, 2004). Using 200 mg L�1 solutions of the Au(III) ions
and incubating them with each of the aqueous plant extracts at
20 �C, the position of the maximum of the LSPR absorption

band was determined using UV–Vis absorption spectropho-
tometry following 0.166, 0.333 and 24 h of the incubation
(Table 1). For all three plant extracts used, the position of

the maximum of the LSPR absorption band remained fairly
constant over the time, and no correlation between the time
and the position of the maximum of the LSPR band was

found. Thus, AuNPs with the ultimate size were obtained
within the first 10 min of the reaction.

To examine the influence of the type of the plant taken for
preparing the extract on the kinetics of the AuNPs biosynthe-

sis, the rate of the AuNPs biosynthesis was further studied by
using UV–Vis absorption spectrophotometry (Fig. 8). The
maximal rate of the AuNPs bio-synthesis for both aqueous

M. piperita and M. officinalis extracts was similar, i.e., 0.19
and 0.18 DA530 s

�1, respectively, while that of the S. officinalis
extract was slower, i.e., 0.07 DA530 s

�1. Nevertheless, regard-

less of the aqueous plant extract used, the AuNPs biosynthesis
was completed within 1 min of the incubation.

In addition, it was found that all three plant extracts could

successfully be employed in the synthesis of AuNPs regardless
of the concentration of the Au(III) ions (50, 100, 200 mg L�1)
or the incubation temperature (20, 40 and 60 �C), as in all cases
a shift in color of the post-reactionmixtures from yellow to ruby

red/bluish was observed. However, the intensity of the men-
tioned ruby red/bluish color was established to increase with
the concentration of the AuNPs precursor. DLS was used to

examine how these different reaction parameters influenced
the size of the obtained AuNPs. The effect on the size by volume
of AuNPs in response to changes in the concentration of the Au

(III) ions and the incubation temperature was unique for each of
the aqueous plant extracts examined (Fig. 9a–c). Nevertheless,
the best conditions to obtain AuNPs with the smallest size for
the aqueous extracts of bothM. piperita andM. officinalis were

a low incubation temperature (20 �C) and a low concentration
of Au (50 mg L�1). In the case of the aqueous extract of S. offic-
inalis, the best conditions for the production of the smallest in

size AuNPswere slightly different, requiring amoderate incuba-
tion temperature (40 �C) and a medium concentration of Au
(100 mg L�1). By comparing the size of the AuNPs biosynthe-

sized at the established optimal conditions (Fig. 9d), it was
found that M. piperita was by far the best plant for facilitating
the production of AuNPs, with an average size that was

32.2% and 16.9% of the size of the AuNPs produced with the
aid of M. officinalis and S. officinalis, respectively.
ation of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants
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Figure 3 The SEM micrographs of the AuNPs obtained using the aqueous plant extracts. AuNPs were obtained following the 24 h

incubation at 20 �C of the 200 mg L�1 Au(III) solutions with the aqueous extracts of (a) M. piperita, (b) M. officinalis, or (c) S. officinalis.

Figure 4 TEM micrographs illustrating the size and morphology of AuNPs obtained with the S. officinalis extract. (a–c) Representative

TEM micrographs of the AuNPs produced using 200 mg L�1 Au(III) at 20 �C are shown. (d) The size and shape distribution of the

AuNPs is presented.
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3.3. Examination of the bioactive compounds in the aqueous
plant extracts

In order to gain some understanding of the active organic
compounds present in the aqueous plant extracts that were
involved in facilitating the biosynthesis of AuNPs, these

extracts were measured by ATR-FTIR before and after the
incubation with the Au(III) ions (Fig. 10). The absorption
bands associated with the compounds involved in the Au

(III) reduction or stabilization of the AuNPs were expected
to be shifted following the addition of the Au(III) ions (Elia
Please cite this article in press as: Dzimitrowicz, A. et al., Preparation and characteriz
and the effect of follow-up treatment with atmospheric pressure glow microd
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et al., 2014). Indeed, the shifts in the multiple bands were
observed following the incubation of the aqueous plant
extracts with the solutions of the Au(III) ions (Table 2). For

the aqueous leaf extracts of all three plants, the shifts in the
position of the bands were associated with the hydroxyl
groups of the phenolic compounds, secondary amines, and

either nitriles, aliphatic amines, or phenols. However, as the
exact position of these bands in each of the aqueous plant
extracts differed, it is likely that the specific compounds
involved in the biosynthesis of AuNPs in each extract were

different.
ation of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants
ischarge. Arabian Journal of Chemistry (2016), http://dx.doi.org/10.1016/j.
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Figure 5 TEM micrographs illustrating the size and morphology of AuNPs obtained with theM. officinalis extract. (a–c) Representative

TEM micrographs of the AuNPs produced using 200 mg L�1 Au(III) at 20 �C are shown. (d) The size and shape distribution of the

AuNPs is presented.
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3.4. The role of the phenolic compounds in the biosynthesis of
AuNPs

In the ATR-FTIR spectra of the aqueous extracts of all three
plants, two bands potentially related to phenolics were

observed to undergo the highest shifts following the addition
of the HAuCl4 solutions (Table 2). Therefore, the potential
role of the phenolic compounds in the biosynthesis of AuNPs
by the aqueous extracts of M. piperita, M. officinalis, and

S. officinalis was further examined by measuring the total con-
centrations of these organic species in the aqueous plant
extracts before and after incubation with the added solutions

of HAuCl4 (Table 3). It was established that there was an
inverse relationship between the concentration of phenolics
and the amount of the added AuNPs precursor. This pointed

out that the reduction of the Au(III) ions to Au0 was associ-
ated with the oxidation of the plant derived phenolics. An
inverse correlation was also found between the initial concen-
tration of phenolics and the size of AuNPs biosynthesized at

conditions providing the smallest NPs (Fig. 9). Furthermore,
it was noted that the aqueous extract of S. officinalis had the
lowest concentration of the phenolic compounds as well as

the slowest rate of the AuNPs biosynthesis (Table 3 and
Fig. 8). Hence, it was concluded that phenolics play a very
important role in the reduction and stabilization of the Au
Please cite this article in press as: Dzimitrowicz, A. et al., Preparation and characteriz
and the effect of follow-up treatment with atmospheric pressure glow microd
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(III) ions to Au0 during the biosynthesis of AuNPs by the
natural plant extracts.

3.5. The dc-lAPGD treatment of the biosynthesized AuNPs

While APP has previously been used to generate spherical
AuNPs (Dzimitrowicz et al., 2015a,b), the effect of treating

the previously obtained AuNPs with the plasma has not been
studied so far. Therefore, it was examined whether the
dc-lAPGD treatment of the biosynthesized AuNPs could

improve their quality. To accomplish this, AuNPs were
biosynthesized using each of the three aqueous plant extracts
and 50 mg L�1 of Au(III) ions. The post-reaction mixtures
containing the colloidal AuNPs were passed through the

dc-lAPGD based reactor, and the size of the AuNPs in
the collected solution was determined with DLS 24 h after
the dc-lAPGD treatment (Fig. 9e). In fact, the plasma treat-

ment resulted in an enlargement of the size of the biosynthe-
sized AuNPs by at least 3-fold.
4. Discussion

In recent years, the use of the plant extracts in the synthesis of
various types of nanoparticles has been examined, and many
ation of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants
ischarge. Arabian Journal of Chemistry (2016), http://dx.doi.org/10.1016/j.
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Figure 6 TEM micrographs illustrating the size and morphology of AuNPs obtained with the M. piperita extract. (a–c) Representative

TEM micrographs of the AuNPs produced using 200 mg L�1 Au(III) at 20 �C are shown. (d) The size distribution is indicated. As the

AuNPs were primarily spherical, a shape distribution was not determined.
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of these studies are nicely summarized in recent review articles

(Singh et al., 2016; Hussain et al., 2016). Extracts from numer-
ous plants were employed for the biosynthesis of AuNPs, and
the sizes of the obtained AuNPs are listed in Table 4. As can be

seen, while most of the studies report the sizes between 10 and
50 nm, sizes as large as 300 nm have been also reported
(Table 4). It can be seen that even with the same plant used
for the preparation of the extract, the AuNPs of different sizes

can be produced (Table 4). The sizes of the AuNPs obtained in
this study fell within the range of the values reported in the
literature.

A disadvantage of comparing the results between studies is
that it is difficult to attribute differences to the plant material,
as the differences could also be due to the varying methods of

the extract production and the AuNPs synthesis reaction
conditions. This prompted us to examine the properties of
the M. piperita, M. officinalis, and S. officinalis extracts using
the standardized methods and a common set of the reaction

parameters. The effect of the plant material, the incubation
temperature, the Au(III) ions concentration, and the incuba-
tion length on the size of the obtained AuNPs were examined.

However, it was not examined how different preparation meth-
ods may influence the properties of the extract. Like in many
other groups (Khalil et al., 2012; Suman et al., 2014; Singh

et al., 2015; Klekotko et al., 2015; Dhamecha et al., 2016,
among others), the extracts were prepared by boiling the
Please cite this article in press as: Dzimitrowicz, A. et al., Preparation and characteriz
and the effect of follow-up treatment with atmospheric pressure glow microd
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ground plant material in distilled water, while others have

prepared the extracts with heating to lower temperatures
(MubarakAli et al., 2011), at room temperature (Elia et al.,
2014), with microwave irradiation (Yallappa et al., 2015a;

Patra et al., 2015), or with methanol extraction (Kumar
et al., 2011). Given that many organic compounds are heat
labile, it was expected that the extracts produced at different
temperatures would have different properties.

The DLS data presented here illustrated that, at least under
the examined conditions, the M. piperita extract facilitated the
production of the AuNPs at least 16% smaller than those

obtained using the extracts of M. officinalis and S. officinalis
(Fig. 9). When the AuNPs were synthesized under the origi-
nally tested conditions (200 mg L�1 and 20 �C), the AuNPs

produced by the M. piperita extract were larger and agglomer-
ated (Fig. 6), unlike those produced by using the extracts of
M. officinalis or S. officinalis (Figs. 4 and 5). This is consistent
with the large size prediction based on the DLS data with these

conditions (Fig. 9). However, it was expected that the AuNPs
produced by the M. piperita extract under the optimal condi-
tions (50 mg L�1 and 20 �C) were not agglomerated; otherwise,

DLS would have indicated much larger sizes for the obtained
AuNPs. It was also noted that the observed sizes of the
obtained AuNPs appeared larger when measured using DLS

as compared to the size measured with TEM, and that it is
commonly accepted that DLS overestimates the NP sizes.
ation of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants
ischarge. Arabian Journal of Chemistry (2016), http://dx.doi.org/10.1016/j.
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Figure 7 EDS spectra of the AuNPs produced using the aqueous

plant extracts. EDS spectra for AuNPs produced with (a) M.

piperita, (b) M. officinalis, or (c) S. officinalis are shown. In all

cases, peaks are labeled. Gold is detected in all, consistent with the

formation of AuNPs, while the other elements are due to trace

elements in the extracts and the use of a copper grid for sample

analysis.

Table 1 The position (in nm) of the maximum of the LSPR

absorption band following the biosynthesis of AuNPs.

Aqueous leaf extract Time (h)

0.167 0.333 24

M. piperita 580.6 577.0 577.5

M. officinalis 524.8 526.9 525.2

S. officinalis 531.7 531.2 524.6

Reactions were performed at 20 �C using the 200 mg L�1 solutions

of Au(III).

Figure 8 The kinetics of the AuNPs biosynthesis using the

aqueous plant extracts. The AuNPs biosynthesis was carried out

at 20 �C using the 200 mg L�1 Au(III) solutions and the aqueous

extracts of M. piperita (solid line), M. officinalis (dashed line) and

S. officinalis (dotted line).
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Monitoring the rate of the AuNPs production at 530 nm
illustrated that the maximal yield was largely obtained within

the first minute of incubation regardless of the plant source
(Fig. 8), although a slight yield increase continued to be
observed for the S. officinalis extract until the three minute
mark. In comparison, other have reported that the AuNPs

synthesis times were required under 10 min of incubation with
plant aqueous extracts (Kumar et al., 2011; Singh et al., 2015,
2016), with Song et al. (2009) reporting 79% conversion

within the first minute. In contrast, traditional chemical reduc-
tion procedures are much longer, multi-step processes (Kumar
et al., 2011; Singh et al., 2016). Thus, the method reported

here allows for the rapid synthesis of the AuNPs. Addition-
ally, based on the maximal LSPR band absorbance at
530 nm, the yield of the AuNPs was similar regardless of the

plant extract used (Fig. 8). Considering both the change in
absorbance from the start to end of the reaction and the con-
centration of the precursor Au(III) ions, the yield obtained
through the procedure described here is similar to or better

than that reported in many other studies using the plant
extracts (such as Dhamecha et al., 2016; Yallappa et al.,
2015a; Suman et al., 2014). The yield is not as high, however,

as that obtained with the method of Jia et al. (2012) based on
ation of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants
ischarge. Arabian Journal of Chemistry (2016), http://dx.doi.org/10.1016/j.
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Figure 9 The effect of the type of the aqueous plant extract, the reaction conditions, and the plasma treatment on the size of the obtained

AuNPs. The effect of the concentration of Au and the incubation temperature on the size of the obtained AuNPs, as determined by DLS,

following the 24 h incubation of the solutions of Au with the aqueous leaf extracts of (a) M. piperita, (b) M. officinalis, or (c) S. officinalis.

The best reaction conditions are indicated by the squares. (d–e) The size distribution of the AuNPs obtained under the optimal reaction

conditions for the aqueous leaf extracts ofM. piperita (dark gray),M. officinalis (light gray), and S. officinalis (white). The size distribution

of the AuNPs obtained in the 50 mg L�1 Au(III) solutions following the 24 h incubation at 20 �C with the aqueous leaf extracts of M.

piperita (dark gray), M. officinalis (light gray), and S. officinalis (white) (d) before and (e) after the plasma treatment.

Figure 10 ATR-FITR spectra of the aqueous extracts. Spectra are shown for the (a) M. piperita, (b) M. officinalis, or (c) S. officinalis

extracts before (black line) and after (gray line) the addition of Au(III) to a final concentration of 200 mg L�1.

Table 2 Shifts of the ATR-FTIR spectra bands after the addition of the aqueous plant extracts to the HAuCl4 solutions.

Organic compound Aqueous extract

M. piperita M. officinalis S. officinalis

Without Au With Au Without Au With Au Without Au With Au

Alcohol, phenol 3220 3226 3266 3284 3284 3313

Nitrile, aliphatic amines, phenols 1047 1050 1047 1043 1093 1031

Secondary amines 2919 2933 2933 2935 2919 2929

Amine III and amine I NDa NDa 1222 1224 NDa NDa

C–Cl 605 605 601 590 555 603

a ND, Corresponding bonds not detected.
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isolated ethoxylated polysterol that can be purified from a
plant material. Taken together, all of these data reported here

support that the use of the M. piperita extracts is a promising
Please cite this article in press as: Dzimitrowicz, A. et al., Preparation and characteriz
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alternative to the use of the toxic chemical reductants in the
production of the AuNPs on an enlarged and semi-

industrial scale.
ation of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants
ischarge. Arabian Journal of Chemistry (2016), http://dx.doi.org/10.1016/j.
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Table 3 Concentration of polyphenols (mg per 100 gGA) in

the aqueous plant extracts before and after the addition of the

HAuCl4 solutions.

Concentration of Au

(mg L�1)

Aqueous extract

M.

piperita

M.

officinalis

S.

officinalis

0 57.62 86.67 36.45

50 55.56 81.86 34.30

100 53.69 76.21 21.49

200 51.63 74.47 19.92

Table 4 A partial list of the sizes of AuNPs synthesized by

plant aqueous extracts reported in the literature.

Plant Measurement

method

Size

(nm)

References

Acalypha indica TEM 20–30 Krishnaraj et al.

(2014)

Anethum

graveolens

TEM 10 Fierascu et al. (2010)

Butea

monosperma

TEM 10–30 Patra et al. (2015)

Cassia

auriculata

TEM 15–25 Kumar et al. (2011)

Corallina of

cinalis

TEM 14.6 El-Kassass and El-

Sheekh (2014)

Cymbopogon

citratus

TEM 20–50 Murugan et al. (2015)

Jasminum

sambac

FE-SEM/

TEM

20–50 Yallappa et al.

(2015a)

Lippia

citriodora

SEM 36 Elia et al. (2014)

Mappia foetida FE-SEM/

TEM

10–20 Yallappa et al.

(2015b)

Melissa

officinalis

TEM 20 This study

Mentha

piperitta

SEM 150 MubarakAli et al.

(2011)

Mentha

piperitta

TEM 55 This study

Mentha

piperitta

DLS 19 This study

Morinda

citrifolia

TEM 12–39 Suman et al. (2014)

Nepenthes

khasiana

DLS 125–

180

Dhamecha et al.

(2016)

Olea europaea TEM 50–

100

Khalil et al. (2012)

Panax ginseng FE-TEM 10–20 Singh et al. (2015)

Pelargonium

graveolens

SEM 45 Elia et al. (2014)

Punica

granatum

SEM 32 Elia et al. (2014)

Salvia officinalis SEM 29 Elia et al. (2014)

Salvia officinalis TEM 15 This study

Syzygium

jambolanum

HRTEM 20–30 Karthick et al. (2015)

Zingiber

officinale

TEM 10 Singh et al. (2011)
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Despite the increasing attention being given to the synthesis
of the AuNPs with natural plant extracts, the bioreduction

mechanism remains to be elucidated (Singh et al., 2016). Other
studies have suggested that a variety of molecules may play a
role, including proteins and metabolites, and that the mecha-

nism may even be plant specific (Baker et al., 2013; Duan
et al., 2015; Singh et al., 2016). Consistent with this, the
ATR-FTIR data reported here (Fig. 10) were consistent with

the involvement of the multiple compounds in the AuNPs
synthesis. Additionally, as the specific location of bands
differed between the plants, different molecules belonging to
the same chemical families likely participated in the AuNPs

synthesis in the different extracts.
Two of the strongest shifts in the ATF-FTIR spectra

following the addition of the Au(III) ions appeared to be asso-

ciated with polyphenols. Polyphenols have previously been
suggested to be involved in the plant extract mediated AuNPs
synthesis on the bases of the FTIR data (Song et al., 2009;

Khalil et al., 2012; El-Kassass and El-Sheekh, 2014;
Murugan et al., 2015); however, this had not been conclusively
demonstrated. This claim is supported by work of Huang et al.
(2010) showing that purified polyphenols can be used to

synthesize the AuNPs, although that study did not address
the in vivo role of polyphenols in crude plant extracts. There-
fore, the F–C assay was employed in an attempt to gather a

more direct evidence for the involvement of polyphenols.
The decrease in the concentration of polyphenols with increas-
ing concentrations of the AuNPs precursor (Table 3) provides

the strong and more direct evidence that polyphenols are oxi-
dized during the reduction of the Au(III) ions. A decrease in
the phenolic content in the Nepenthes khasiana extracts follow-

ing the formation of AuNPs was also very recently observed
(Dhamecha et al., 2016). The role of phenolics was further
supported by the observed relationships between their concen-
tration and the size and synthesis rate of AuNPs. However, the

differential effects of the incubation temperature and the
concentration of the Au(III) ions on the size of the AuNPs
produced with each of the aqueous plant extracts cannot be

simply explained by the content of the phenolics. Hence, the
type of the phenolics, as well as the type of other compounds
present in the plant extracts, is likely to influence both the size

of the obtained AuNPs and the response of the size to the
changing reaction conditions.

In addition to plant extracts, lasers (e.g. Kuladeep et al.,

2012; Maximova et al., 2015) and APPs (Hieda et al., 2008;
Shirai et al., 2014; Dzimitrowicz et al., 2015a,b) can be
employed in the green synthesis of AuNPs. Past work has
illustrated that lasers can be used to synthesize AuNPs from
Please cite this article in press as: Dzimitrowicz, A. et al., Preparation and characteriz
and the effect of follow-up treatment with atmospheric pressure glow microd
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the Au(III) ions (Kuladeep et al., 2012), as well as to fragment
the existing AuNPs to produce the AuNPs of smaller sizes

(Maximova et al., 2015). It has been recently demonstrated
in our group that AuNPs can be synthesized from the Au
(III) ions by dc-lAPGD in a flowing liquid solution

(Dzimitrowicz et al., 2015a,b), but had not previously exam-
ined whether this system could also serve to split the existing
AuNPs. Here, it was observed that the passage of the AuNPs

synthesized by the natural plant extracts did not reduce their
size, but instead resulted in an enlargement. There are two
possible explanations for that. The dc-lAPGD treatment
resulted in the partial evaporation of the water in these

solutions, increasing the concentration of the AuNPs, poten-
tially leading to their agglomeration. Alternatively, it may be
ation of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants
ischarge. Arabian Journal of Chemistry (2016), http://dx.doi.org/10.1016/j.
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that the plasma treatment, either the plasma itself or the heat
generated during the dc-lAPGD treatment, disrupted stabiliz-
ing the interactions between the AuNPs and the natural

compounds in the extracts. This would therefore provide
new opportunities for the chemical reactions, leading to aggre-
gation and sedimentation of the AuNPs.

5. Conclusions

By examining the AuNP synthesis properties of the aqueous extracts of

three evolutionarily related plant species under standardized condi-

tions, it is possible to directly compare them and observe that the

optimal reaction conditions differed for each. Under optimal condi-

tions, the M. piperita extract produced the small sized AuNPs. The

use of the F–C assay provided clear evidence implicating phenolics

in the reduction of the Au(III) ions and the production of AuNPs.

Finally, treatment of the biosynthesized AuNPs with the aqueous plant

extracts with dc-lAPGD resulted in an enlargement of the NPs.
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