198 research outputs found
A Choreography-Based and Collaborative Road Mobility System for L'Aquila City
Next Generation Internet (NGI) is the European initiative launched to identify the future internet technologies, designed to serve the needs of the digitalized society while ensuring privacy, trust, decentralization, openness, inclusion, and business cooperation. NGI provides efficient support to promote diversity, decentralization and the growth of disruptive innovation envisioned by smart cities. After the earthquake of 6 April 2009, the city of L'Aquila is facing a massive and innovative reconstruction process. As a consequence, nowadays, the L'Aquila city can be considered as a living laboratory model for applications within the context of smart cities. This paper describes and evaluates the realization of a Collaborative Road Mobility System (CRMS) for L'Aquila city by using our CHOReVOLUTION approach for the automated choreography production. The CRMS allows vehicles and transport infrastructure to interconnect, share information and use it to coordinate their actions
Realistic and Spherical Head Modeling for EEG Forward Problem Solution: A Comparative Cortex-Based Analysis
The accuracy of forward models for electroencephalography (EEG) partly depends on head tissues geometry and strongly affects the reliability of the source reconstruction process, but it is not yet clear which brain regions are more sensitive to the choice of different model geometry. In this paper we compare different spherical and realistic head modeling techniques in estimating EEG forward solutions from current dipole sources distributed on a standard cortical space reconstructed from Montreal Neurological Institute (MNI) MRI data. Computer simulations are presented for three different four-shell head models, two with realistic geometry, either surface-based (BEM) or volume-based (FDM), and the corresponding sensor-fitted spherical-shaped model. Point Spread Function (PSF) and Lead Field (LF) cross-correlation analyses were performed for 26 symmetric dipole sources to quantitatively assess models' accuracy in EEG source reconstruction. Realistic geometry turns out to be a relevant factor of improvement, particularly important when considering sources placed in the temporal or in the occipital cortex
CO2 Modulates the Central Neural Processing of Sucrose Perception
The five universally accepted tastes, sweet, salty, sour, bitter, and umami (a savory sensation elicited by monosodium glutamate) have specific receptors in oral, pharyngeal and laryngeal regions [1]. The most credited candidates to the function of human primary taste cortex are the frontal operculum and the anterior insula; while the opercular cortex and the orbitofrontal cortex are thought to code for secondary gustatory functions, while the amygdale and the dorsolateral prefrontal cortex are involved as hierarchically superior processing units [2]. Conversely, more is known on the peripheral pathway of taste, including the molecular dynamics of many receptor
Long-Term Fluoride Release from Dental Resins Affects STRO-1+ Cell Behavior.
Fluoride-releasing restorative dental materials can be beneficial to remineralize dentin and help prevent secondary caries. However, the effects of fluoride release from dental materials on the activity of dental pulp stem cells are not known. Here we investigate whether different fluoride release kinetics from dental resins supplemented with modified hydrotalcite (RK-F10) or fluoride-glass filler (RK-FG10) could influence the behavior of a human dental pulp stem cell subpopulation (STRO-1(+) cells) known for its ability to differentiate toward an odontoblast-like phenotype. The 2 resins, characterized by similar physicochemical properties and fluoride content, exhibited different long-term fluoride release kinetics. Our data demonstrate that long-term exposure of STRO-1(+) cells to a continuous release of a low amount of fluoride by RK-F10 increases their migratory response to transforming growth factor ÎČ1 (TGF-ÎČ1) and stromal cell-derived factor 1 (SDF-1), both important promoters of pulp stem cell recruitment. Moreover, the expression patterns of dentin sialoprotein (dspp), dentin matrix protein 1 (dmp1), osteocalcin (ocn), and matrix extracellular phosphoglycoprotein (mepe) indicate a complete odontoblast-like cell differentiation only when STRO-1(+) cells were cultured on RK-F10. On the contrary, RK-FG10, characterized by an initial fluoride release burst and reduced lifetime of the delivery, did not elicit any significant effect on both STRO-1(+) cell migration and differentiation. Taken together, our results highlight the importance of taking into account fluoride release kinetics in addition to fluoride concentration when designing new fluoride-restorative materials
Rising Sound Intensity: An Intrinsic Warning Cue Activating the Amygdala
Human subjects overestimate the change of rising intensity sounds compared with falling intensity sounds. Rising sound intensity has therefore been proposed to be an intrinsic warning cue. In order to test this hypothesis, we presented rising, falling, and constant intensity sounds to healthy humans and gathered psychophysiological and behavioral responses. Brain activity was measured using event-related functional magnetic resonance imaging. We found that rising compared with falling sound intensity facilitates autonomic orienting reflex and phasic alertness to auditory targets. Rising intensity sounds produced neural activity in the amygdala, which was accompanied by activity in intraparietal sulcus, superior temporal sulcus, and temporal plane. Our results indicate that rising sound intensity is an elementary warning cue eliciting adaptive responses by recruiting attentional and physiological resources. Regions involved in cross-modal integration were activated by rising sound intensity, while the right-hemisphere phasic alertness network could not be supported by this stud
Auditory cortex hypoperfusion: a metabolic hallmark in Beta Thalassemia
Abstract Background Sensorineural hearing loss in beta-thalassemia is common and it is generally associated with iron chelation therapy. However, data are scarce, especially on adult populations, and a possible involvement of the central auditory areas has not been investigated yet. We performed a multicenter cross-sectional audiological and single-center 3Tesla brain perfusion MRI study enrolling 77 transfusion-dependent/non transfusion-dependent adult patients and 56 healthy controls. Pure tone audiometry, demographics, clinical/laboratory and cognitive functioning data were recorded. Results Half of patients (52%) presented with high-frequency hearing deficit, with overt hypoacusia (Pure Tone Average (PTA)â>â25Â dB) in 35%, irrespective of iron chelation or clinical phenotype. Bilateral voxel clusters of significant relative hypoperfusion were found in the auditory cortex of beta-thalassemia patients, regardless of clinical phenotype. In controls and transfusion-dependent (but not in non-transfusion-dependent) patients, the relative auditory cortex perfusion values increased linearly with age (pâ<â0.04). Relative auditory cortex perfusion values showed a significant U-shaped correlation with PTA values among hearing loss patients, and a linear correlation with the full scale intelligence quotient (right side pâ=â0.01, left side pâ=â0.02) with its domain related to communication skills (right side pâ=â0.04, left side pâ=â0.07) in controls but not in beta-thalassemia patients. Audiometric test results did not correlate to cognitive test scores in any subgroup. Conclusions In conclusion, primary auditory cortex perfusion changes are a metabolic hallmark of adult beta-thalassemia, thus suggesting complex remodeling of the hearing function, that occurs regardless of chelation therapy and before clinically manifest hearing loss. The cognitive impact of perfusion changes is intriguing but requires further investigations
Properties of an alkali-thermo stable xylanase from Geobacillus thermodenitrificans A333 and applicability in xylooligosaccharides generation
An extracellular thermo-alkali-stable and cellulase-free xylanase from Geobacillus thermodenitrificans A333 was purified to homogeneity by ion exchange and size exclusion chromatography. Its molecular mass was 44 kDa as estimated in native and denaturing conditions by gel filtration and SDS-PAGE analysis, respectively. The xylanase (GtXyn) exhibited maximum activity at 70 °C and pH 7.5. It was stable over broad ranges of temperature and pH retaining 88 % of activity at 60 °C and up to 97 % in the pH range 7.5â10.0 after 24 h. Moreover, the enzyme was active up to 3.0 M sodium chloride concentration, exhibiting at that value 70 % residual activity after 1 h. The presence of other metal ions did not affect the activity with the sole exceptions of K+ that showed a stimulating effect, and Fe2+, Co2+ and Hg2+, which inhibited the enzyme. The xylanase was activated by non-ionic surfactants and was stable in organic solvents remaining fully active over 24 h of incubation in 40 % ethanol at 25 °C. Furthermore, the enzyme was resistant to most of the neutral and alkaline proteases tested. The enzyme was active only on xylan, showing no marked preference towards xylans from different origins. The hydrolysis of beechwood xylan and agriculture-based biomass materials yielded xylooligosaccharides with a polymerization degree ranging from 2 to 6 units and xylobiose and xylotriose as main products. These properties indicate G. thermodenitrificans A333 xylanase as a promising candidate for several biotechnological applications, such as xylooligosaccharides preparation
- âŠ