2,976 research outputs found

    Simulation of power plant environmental impacts within the extended marine framework

    Get PDF
    This paper proposes the use of Modelling and Simulation to analyse the different Environmental Impacts of Industrial Facilities with special attention to Power Plant located within the Extended Maritime Framework. The approach proposed is based on combining different simulation approaches to be able to reproduce the phenomena affecting this context in a comprehensive way. The simulation experimental results are dynamically presented and updated within a Synthetic Environment, based on a Serious Game, in order to be able to augment the virtual representation with additional information. It is proposed a case study related to a Power Plant including different Gas Turbines located in front the coast and the scenario include the evaluation of the emissions on the Atmosphere, Sea Water and Ground, the inclusions on these domains as well as their impact on the flora, fauna and social layers

    A STRATEGIC SERIOUS GAME ADDRESSING SYSTEM OF SYSTEMS ENGINEERING

    Get PDF
    Serious Games are currently extending their capabilities to strategic Education and Training by innovative approaches and new technological solutions. In this paper, the authors propose a new Serious Game devoted to address such aspects with special focus on System of Systems Engineering (SoSE). The proposed case uses a challenging framework related to the development of an innovative System of Systems for defense and homeland security that could be used by users to acquire the fundamental concepts of SoSE. The scenario allows to investigate alternative interoperable solutions among different platforms, sensors, infrastructures and doctrines respect evolving threats in relation to an air defense solution based on airborne radars

    Detection of hepatitis E virus RNA in rats caught in pig farms from Northern Italy

    Get PDF
    Hepatitis E virus (HEV) strains belonging to the Orthohepevirus genus are divided into four species (A\u2013D). HEV strains included in the Orthohepevirus A species infect humans and several other mammals. Among them, the HEV\u20103 and HEV\u20104 genotypes are zoonotic and infect both humans and animals, of which, pigs and wild boar are the main reservoirs. Viruses belonging to the Orthohepevirus C species (HEV\u2010C) have been considered to infect rats of different species and carnivores. Recently, two studies reported the detection of HEV\u2010C1 (rat HEV) RNA in immunocompromised and immunocompetent patients, suggesting a possible transmission of rat HEV to humans. The role of rats and mice as reservoir of HEV and the potential zoonotic transmission is still poorly known and deserves further investigation. To this purpose, in this study, the presence of HEV RNA was investigated in the intestinal contents and liver samples from 47 Black rats (Rattus rattus) and 21 House mice (Mus musculus) captured in four pig farms in Northern Italy. The presence of both Orthohepevirus A and C was investigated by the real\u2010rime RT\u2010PCR specific for HEV\u20101 to HEV\u20104 genotypes of Orthohepevirus A species and by a broad spectrum hemi\u2010nested RT\u2010PCR capable of detecting different HEV species including rat HEV. The intestinal content from two Black rats resulted positive for HEV\u2010C1 RNA and for HEV\u20103 RNA, respectively. None of the House mice was HEV RNA positive. Sequence analyses confirmed the detection of HEV\u2010C1, genotype G1 and HEV\u20103 subtype e. The viral strain HEV\u20103e detected in the rat was identical to swine HEV strains detected in the same farm. Liver samples were negative for the detection of either rat HEV or HEV\u20103

    SIMULATION OF AUTONOMOUS SYSTEMS COLLABORATING IN INDUSTRIAL PLANTS FOR MULTIPLE TASKS

    Get PDF
    The autonomous systems are continuously extending their application fields and current advances in sensors and controls are enabling the possibility to operate also inside buildings and industrial plants. These new capabilities introduce challenges to be addressed in order to carry out new tasks and missions. This paper proposes advances in Modeling, interoperable Simulation and Serious Games devoted to support researches supporting autonomous system operations within Industrial Facilities

    Interoperable Simulation and Serious Games for creating an Open Cyber Range

    Get PDF
    The paper proposes an open architecture to support the creation of a synthetic environment devoted to simulate complex scenarios related to the protection of cyber-physical systems. The proposed approach is based on applying the combination of interoperable simulation and serious games to develop a framework where different models, as well as real equipment, could interoperate based on High Level Architecture standard. By this approach, it becomes possible to create a federation reproducing a scenario including multiple physical and cyber layers interacting dynamically and reproducing complex situations. The authors propose an example of specific case study conceptually developed to apply this approach

    Distribution of interleukin-1 receptor complex at the synaptic membrane driven by interleukin-1β and NMDA stimulation

    Get PDF
    Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that contributes to neuronal injury in various degenerative diseases, and is therefore a potential therapeutic target. It exerts its biological effect by activating the interleukin-1 receptor type I (IL-1RI) and recruiting a signalling core complex consisting of the myeloid differentiation primary response protein 88 (MyD88) and the IL-1R accessory protein (IL-1RAcP). This pathway has been clearly described in the peripheral immune system, but only scattered information is available concerning the molecular composition and distribution of its members in neuronal cells. The findings of this study show that IL-1RI and its accessory proteins MyD88 and IL-1RAcP are differently distributed in the hippocampus and in the subcellular compartments of primary hippocampal neurons. In particular, only IL-1RI is enriched at synaptic sites, where it co-localises with, and binds to the GluN2B subunit of NMDA receptors. Furthermore, treatment with NMDA increases IL-1RI interaction with NMDA receptors, as well as the surface expression and localization of IL-1RI at synaptic membranes. IL-1β also increases IL-1RI levels at synaptic sites, without affecting the total amount of the receptor in the plasma membrane. Our results reveal for the first time the existence of a dynamic and functional interaction between NMDA receptor and IL-1RI systems that could provide a molecular basis for IL-1β as a neuromodulator in physiological and pathological events relying on NMDA receptor activation

    Disasters and emergency management in chemical and industrial plants: Drones simulation for education and training

    Get PDF
    The use of simulation for training is proven to be extremely effective both in term of costs and in term of its flexibility for different uses and applications, such as building situation awareness and creating scenarios for training scopes. The aim of the project proposed is to demonstrate the powerful rule of simulation in UAV pilots\u2019 cooperative training; the project presented makes use of a 3D simulation environment in order to build a realistic condition of an emergency situation in a chemical plant for the first responders. The model proposed makes use of HLA (High Level Architecture) standards in order to be potentially federated with other existing simulators. In the solution proposed, the pilot of the drone must accomplish the mission in a given time piloting a UAV; the scenario is based inside a chemical plant where a disaster is newly occurred. Then ability of the pilot is measured by the system and several constraints are reproduced to provide a realistic training scenario (such as small spaces and barriers to overcome, battery durations, risks of damages due to high temperatures zones, etc.); the system records and tracks all the actions of the pilot and gives a feedback to the user at the end of the simulation time

    From Smart Apes to Human Brain Boxes. A Uniquely Derived Brain Shape in Late Hominins Clade

    Get PDF
    Modern humans have larger and more globular brains when compared to other primates. Such anatomical features are further reflected in the possession of a moderately asymmetrical brain with the two hemispheres apparently rotated counterclockwise and slid anteroposteriorly on one another, in what is traditionally described as the Yakovlevian torque. Developmental disturbance in human brain asymmetry, or lack thereof, has been linked to several cognitive disorders including schizophrenia and depression. More importantly, the presence of the Yakovlevian torque is often advocated as the exterior manifestation of our unparalleled cognitive abilities. Consequently, studies of brain size and asymmetry in our own lineage indirectly address the question of what, and when, made us humans, trying to trace the emergence of brain asymmetry and expansion of cortical areas back in our Homo antecedents. Here, we tackle this same issue by studying the evolution of human brain size, shape, and asymmetry on a phylogenetic tree including 19 apes and Homo species, inclusive of our fellow ancestors. We found that a significant positive shift in the rate of brain shape evolution pertains to the clade including modern humans, Neanderthals, and Homo heidelbergensis. Although the Yakovlevian torque is well evident in these species and levels of brain asymmetry are correlated to changes in brain shape, further early Homo species possess the torque. Even though a strong allometric component is present in hominoid brain shape variability, this component seems unrelated to asymmetry and to the rate shift we recorded. These results suggest that changes in brain size and asymmetry were not the sole factors behind the fast evolution of brain shape in the most recent Homo species. The emergence of handedness and early manifestations of cultural modernity in the archeological record nicely coincide with the same three species sharing the largest and most rapidly evolving brains among all hominoids
    corecore