33 research outputs found

    Engineered ferritin for lanthanide binding

    Get PDF
    Ferritin H-homopolymers have been extensively used as nanocarriers for diverse applications in the targeted delivery of drugs and imaging agents, due to their unique ability to bind the transferrin receptor (CD71), highly overexpressed in most tumor cells. In order to incorporate novel fluorescence imaging properties, we have fused a lanthanide binding tag (LBT) to the C-terminal end of mouse H-chain ferritin, HFt. The HFt-LBT possesses one high affinity Terbium binding site per each of the 24 subunits provided by six coordinating aminoacid side chains and a tryptophan residue in its close proximity and is thus endowed with strong FRET sensitization properties. Accordingly, the characteristic Terbium emission band at 544 nm for the HFt-LBT Tb(III) complex was detectable upon excitation of the tag enclosed at two order of magnitude higher intensity with respect to the wtHFt protein. X-ray data at 2.9 Å and cryo-EM at 7 Å resolution demonstrated that HFt-LBT is correctly assembled as a 24-mer both in crystal and in solution. On the basis of the intrinsic Tb(III) binding properties of the wt protein, 32 additional Tb(III) binding sites, located within the natural iron binding sites of the protein, were identified besides the 24 Tb(III) ions coordinated to the LBTs. HFt-LBT Tb(III) was demonstrated to be actively uptaken by selected tumor cell lines by confocal microscopy and FACS analysis of their FITC derivatives, although direct fluorescence from Terbium emission could not be singled out with conventional, 295–375 nm, fluorescence excitation

    Humanized archaeal ferritin as a tool for cell targeted delivery

    No full text
    Human ferritins have been extensively studied to be used as nanocarriers for diverse applications and could represent a convenient alternative for targeted delivery of anticancer drugs and imaging agents. However, the most relevant limitation to their applications is the need for highly acidic experimental conditions during the initial steps of particle/cargo assembly, a process that could affect both drug stability and the complete reassembly of the ferritin cage. To overcome this issue the unique assembly of Archaeoglobus fulgidus ferritin was genetically engineered by changing a surface exposed loop of 12 amino acids connecting B and C helices to mimic the sequence of the analogous human H-chain ferritin loop. This new chimeric protein was shown to maintain the unique, cation linked, association–dissociation properties of Archaeoglobus fulgidus ferritin occurring at neutral pH values, while exhibiting the typical human H-homopolymer recognition by the transferrin receptor TfR1. The chimeric protein was confirmed to be actively and specifically internalized by HeLa cells, thus representing a unique nanotechnological tool for cell-targeted delivery of possible payloads for diagnostic or therapeutic purposes. Moreover, it was demonstrated that the 12 amino acids’ loop is necessary and sufficient for binding to the transferrin receptor. The three-dimensional structure of the humanized Archaeoglobus ferritin has been obtained both as crystals by X-ray diffraction and in solution by cryo-EM

    Intermediates in SARS-CoV-2 spike-mediated cell entry

    No full text
    SARS-CoV-2 cell entry is completed after viral spike (S) protein-mediated membrane fusion between viral and host cell membranes. Stable prefusion and postfusion S structures have been resolved by cryo-electron microscopy and cryo-electron tomography, but the refolding intermediates on the fusion pathway are transient and have not been examined. We used an antiviral lipopeptide entry inhibitor to arrest S protein refolding and thereby capture intermediates as S proteins interact with hACE2 and fusion-activating proteases on cell-derived target membranes. Cryo-electron tomography imaged both extended and partially folded intermediate states of S2, as well as a novel late-stage conformation on the pathway to membrane fusion. The intermediates now identified in this dynamic S protein-directed fusion provide mechanistic insights that may guide the design of CoV entry inhibitors

    Discovery of neutralizing SARS-CoV-2 antibodies enriched in a unique antigen specific B cell cluster.

    No full text
    Despite development of effective SARS-CoV-2 vaccines, a sub-group of vaccine non-responders depends on therapeutic antibodies or small-molecule drugs in cases of severe disease. However, perpetual viral evolution has required continuous efficacy monitoring as well as exploration of new therapeutic antibodies, to circumvent resistance mutations arising in the viral population. We performed SARS-CoV-2-specific B cell sorting and subsequent single-cell sequencing on material from 15 SARS-CoV-2 convalescent participants. Through screening of 455 monoclonal antibodies for SARS-CoV-2 variant binding and virus neutralization, we identified a cluster of activated B cells highly enriched for SARS-CoV-2 neutralizing antibodies. Epitope binning and Cryo-EM structure analysis identified the majority of neutralizing antibodies having epitopes overlapping with the ACE2 receptor binding motif (class 1 binders). Extensive functional antibody characterization identified two potent neutralizing antibodies, one retaining SARS-CoV-1 neutralizing capability, while both bind major common variants of concern and display prophylactic efficacy in vivo. The transcriptomic signature of activated B cells harboring broadly binding neutralizing antibodies with therapeutic potential identified here, may be a guide in future efforts of rapid therapeutic antibody discovery

    Monoclonal antibody screening.

    No full text
    (A) Neutralization percentage of SARS-CoV-2 pseudovirus shown for each individual mAb supernatant analyzed at 20 μg/ml, shown on y-axis. MAbs are ordered along the x-axis from best (left) to poorest (right) neutralizers. n = 455. Screening was performed once in duplicate determinations. (B) Visualization of the expressed mAbs B cell cluster origin and distribution within all isolated B cells. Neutralizers shown in green ( neutralization, n = 9). Top neutralizers shown in red (<95% neutralization, n = 24). Non-neutralizers shown in blue (<80% neutralization). Background shown in grey (cells not expressed for screening).(C) Distribution of successful neutralizing mAbs, between clusters 6, 8 and remaining clusters (cluster 7 excluded). Hit rate cut-off for defining successful neutralizations was set at 80% pseudovirus neutralization. Hit rates were calculated within each cluster group. n = 455 (D) Predictive performance of Ag scores used for SARS-CoV-2 specific B cell sorting towards neutralization capability in cluster 8. n = 108. Red = SARS-CoV-2 D614G mutant trimer, Blue = SARS-CoV-2 RBD, Orange = SARS-CoV-1 RBD, Green = SARS-CoV-2 trimer. The p-value is based on a Kruskal-Wallis test of the receiver-operator characteristics curve.</p

    Single-cell profiling of 7176 B cells from three donor groups by scRNA-seq and V(D)J-seq.

    No full text
    (A) UMAP projection and unsupervised clustering revealing 9 transcriptomic clusters annotated according to selected marker genes. (B) Somatic hyper-mutation percentage compared to inferred naïve germline stratified by isotype and transcriptomic cluster, highlighting one cluster of naïve B cells associated with particularly low mutation rate. The dotted line indicates the threshold used for the selection of mAbs for validation. The number of cells within each cluster or isotype is displayed below. (C) Fraction of cells with each isotype stratified by transcriptomic cluster highlighting the naïve cluster and three IgG-rich clusters. (D) mRNA expression levels given by the log of the normalized UMI counts of selected markers in each transcriptomic cluster. (E) Scaled average expression in each cluster indicating memory B cell, naïve B cell and activated B cell markers highlighting unique transcriptomic profiles of the clusters. The size of the dots indicates the percentage of cells expressing the given marker gene within the cluster.</p
    corecore