113 research outputs found
Ownership and control in a competitive industry
We study a differentiated product market in which an investor initially owns a controlling stake in one of two competing firms and may acquire a non-controlling or a controlling stake in a competitor, either directly using her own assets, or indirectly via the controlled firm. While industry profits are maximized within a symmetric two product monopoly, the investor attains this only in exceptional cases. Instead, she sometimes acquires a noncontrolling stake. Or she invests asymmetrically rather than pursuing a full takeover if she acquires a controlling one. Generally, she invests indirectly if she only wants to affect the product market outcome, and directly if acquiring shares is profitable per se. --differentiated products,separation of ownership and control,private benefits of control
Children living with ‘sustainable’ urban architectures
This paper considers the everyday geographies of children living in new large-scale urban developments in which multiple forms of ‘sustainable’ urban architecture are characteristic features. We argue that children’s experiences of living with materialities, politics and technologies of sustainability have too-often been marginalised in much chief research on childhood, youth and sustainability. Drawing on qualitative research with 8-16-year-olds living with materialities of ‘sustainable’ eco-housing, urban drainage, wind turbines and photovoltaic panelling, we explore how sustainable urban architectures are noticed, (mis)understood, cared about, and lived-with by children in the course of their everyday geographies. In so doing, we highlight the challenging prevalence and significance of architectural conservatisms, misconceptions, rumours disillusionments and urban myths relating to sustainable urban architectures
Alimentary fluoride intake in preschool children
<p>Abstract</p> <p>Background</p> <p>The knowledge of background alimentary fluoride intake in preschool children is of utmost importance for introducing optimal and safe caries preventive measures for both individuals and communities. The aim of this study was to assess the daily fluoride intake analyzing duplicate samples of food and beverages. An attempt was made to calculate the daily intake of fluoride from food and swallowed toothpaste.</p> <p>Methods</p> <p>Daily alimentary fluoride intake was measured in a group of 36 children with an average age of 4.75 years and an average weight of 20.69 kg at baseline, by means of a double plate method. This was repeated after six months. Parents recorded their child's diet over 24 hours and collected duplicated portions of food and beverages received by children during this period. Pooled samples of food and beverages were weighed and solid food samples were homogenized. Fluoride was quantitatively extracted from solid food samples by a microdiffusion method using hexadecyldisiloxane and perchloric acid. The content of fluoride extracted from solid food samples, as well as fluoride in beverages, was measured potentiometrically by means of a fluoride ion selective electrode.</p> <p>Results</p> <p>Average daily fluoride intake at baseline was 0.389 (SD 0.054) mg per day. Six months later it was 0.378 (SD 0.084) mg per day which represents 0.020 (SD 0.010) and 0.018 (SD 0.008) mg of fluoride respectively calculated per kg bw/day.</p> <p>When adding the values of unwanted fluoride intake from the toothpaste shown in the literature (0.17-1.21 mg per day) the estimate of the total daily intake of fluoride amounted to 0.554-1.594 mg/day and recalculated to the child's body weight to 0.027-0.077 mg/kg bw/day.</p> <p>Conclusions</p> <p>In the children studied, observed daily fluoride intake reached the threshold for safe fluoride intake. When adding the potential fluoride intake from swallowed toothpaste, alimentary intake reached the optimum range for daily fluoride intake. These results showed that in preschool children, when trying to maximize the benefit of fluoride in caries prevention and to minimize its risk, caution should be exercised when giving advice on the fluoride containing components of child's diet or prescribing fluoride supplements.</p
Enteral feeding reduces metabolic activity of the intestinal microbiome in Crohn’s disease: an observational study
Background/Objectives:
Enteral feeding will induce remission in as many as 80–90% of compliant patients with active Crohn’s disease (CD), but its method of action remains uncertain. This study was designed to examine its effects on the colonic microbiome.
Methods/Subjects:
Healthy volunteers and patients with CD followed a regimen confined to enteral feeds alone for 1 or 2 weeks, respectively. Chemicals excreted on breath or in faeces were characterised at the start and at the end of the feeding period by gas chromatography/mass spectrometry.
Results:
One week of feeding in healthy volunteers caused significant changes in stool colour and deterioration in breath odour, together with increased excretion of phenol and indoles on the breath. Feeding for 2 weeks in patients with CD produced significant improvements in symptoms and a decrease in the concentration of C-reactive protein. The faecal concentrations of microbial products, including short-chain fatty acids (SCFAs), and potentially toxic substances, including 1-propanol, 1-butanol and the methyl and ethyl esters of SCFAs, showed significant falls.
Conclusions:
A significant change occurs in the production of microbial metabolites after enteral feeding in both healthy volunteers and patients with CD. Many of those detected in CD are toxic and may feasibly lead to the immunological attack on the gut microbiota, which is characteristic of inflammatory bowel disease. The reduction in the production of such metabolites after enteral feeding may be the reason for its effectiveness in CD
Defining an olfactory receptor function in airway smooth muscle cells
Pathways that control, or can be exploited to alter, the increase in airway smooth muscle (ASM) mass and cellular remodeling that occur in asthma are not well defined. Here we report the expression of odorant receptors (ORs) belonging to the superfamily of G-protein coupled receptors (GPCRs), as well as the canonical olfaction machinery (G olf and AC3) in the smooth muscle of human bronchi. In primary cultures of isolated human ASM, we identified mRNA expression for multiple ORs. Strikingly, OR51E2 was the most highly enriched OR transcript mapped to the human olfactome in lung-resident cells. In a heterologous expression system, OR51E2 trafficked readily to the cell surface and showed ligand selectivity and sensitivity to the short chain fatty acids (SCFAs) acetate and propionate. These endogenous metabolic byproducts of the gut microbiota slowed the rate of cytoskeletal remodeling, as well as the proliferation of human ASM cells. These cellular responses in vitro were found in ASM from non-asthmatics and asthmatics, and were absent in OR51E2-deleted primary human ASM. These results demonstrate a novel chemo-mechanical signaling network in the ASM and serve as a proof-of-concept that a specific receptor of the gut-lung axis can be targeted to treat airflow obstruction in asthma.open0
Identifying Where REDD+ Financially Out Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach
Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional finescale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas
with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD + could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US 27 million to secure these areas for 25 years. Higher carbon offset price (US 380–416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD+ competitiveness in tropical floodplain landscapes; and, providing a robust approach for identifying and targeting limited REDD+ funds
The Acid Test of Fluoride: How pH Modulates Toxicity
Background: It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of . Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of into cells. Here, we asked if was more toxic at low pH, as measured by increased cell stress and decreased cell function. Methodology/Principal Findings: Treatment of ameloblast-derived LS8 cells with at low pH reduced the threshold dose of required to phosphorylate stress-related proteins, PERK, eIF2α, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of dose and pH. Luciferase secretion significantly decreased within 2 hr of treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm in their drinking water exhibited increased stress-mediated phosphorylation of eIF2α in maturation stage ameloblasts (pH<6.0) as compared to secretory stage ameloblasts (pH∼7.2). Intriguingly, -treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn). In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected. Conclusions: The low pH environment of maturation stage ameloblasts facilitates the uptake of , causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis
- …