33 research outputs found
Impact of ocean-atmosphere coupling on present and future Köppen-Geiger climate classification in Europe
The effect of air-sea coupling in the simulation of the European climate is assessed through a climate type classification that uses surface temperature and precipitation from a regional atmosphere-ocean coupled model and from its atmospheric component. The atmospheric setup in both models is the same, differing only in the representation of the oceanic fields. The simulations cover the present and future-time climate under the RCP8.5 CMIP5 scenario. Climate type distributions obtained from both coupled and uncoupled simulations are similar to those obtained from ERA5 for the 1976–2005 period. Both models simulate colder climate types for present-time in southern and northeastern regions compared to ERA5, possibly due to a weaker influence of the Atlantic circulation, and drier climate types in some western Mediterranean areas. Also, for present-time coupling leads to more humid winters (relatively drier summers) in some zones of north Spain and south France, and drier climates in some western Mediterranean spots. Based on simulations with these models under the RCP8.5 scenario, we find that by the end of the 21st century (2070–2099) the climate type distribution changes in more than 50% of the domain. While both models project the reduction of regions with cold climate types and the expansion of those with hot summers and hot arid climate types, these changes affect a larger area in the coupled simulation. These differences may be related to a drier signal in the coupled simulation, especially during summer, due to the influence of colder surface water in the North Atlantic Ocean and the Mediterranean Sea. Using a climate classification to evaluate the annual cycles of the simulated temperature and precipitation data provides a novel insight into the impact of air-ocean coupling on the representation of the climate, and consequently into the simulated impact on ecosystems and human activities in Europe
Impact of climate change on wind and photovoltaic energy resources in the Canary Islands and adjacent regions
© 2021 by the authors.
Funding: This research was funded by the European Union’s Horizon 2020 research and innovation program grant number 776661 (SOCLIMPACT project).The progressive energy transition to systems with higher shares of renewable energy is particularly important in islands regions, which are largely dependent on energy imports. In this context, to assess the impact of climate change on renewable energy resources during the 21st century is crucial for polycimakers and stakeholders. In this work, we provide an overview of wind and photovoltaic (PV) resources, its variability and complementarity between them, as well as their future changes, in the Canary Islands and surrounding areas. Variability is assessed through the analysis of energy droughts (low-productivity periods). In addition, a sensitivity test is performed to find the optimal combination of PV (photovoltaic) and wind that reduce energy droughts and the persistence of that conditions at a local scale. A set of climate simulations from the MENA-CORDEX runs are used, in present and future climate (2046-2065, 2081-2100) for two different scenarios (RCP2.6, RCP8.5). Results show different changes in wind productivity depending on the scenario: a decrease in RCP2.6 and an increase in the RCP8.5. PV experienced a subtle decrease, with some exceptions. Changes in variability are small and the complementarity test shows that high shares of PV energy (above 50%) reduce both, energy droughts and the persistence of drought conditions.Depto. de Física de la Tierra y AstrofísicaFac. de Ciencias FísicasTRUEEuropean Commissionpu
Impact of air–sea coupling on the climate change signal over the Iberian Peninsula
In this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean
Climate change signal in the ocean circulation of the Tyrrhenian Sea
The Tyrrhenian Sea plays an important role in the winter deep water formation in the northwestern Mediterranean through the water that enters the Ligurian Sea via the Corsica Channel. Therefore, the study of the impact of the changes on the future climate on the Tyrrhenian circulation and its consequences represents an important issue. Furthermore, the seasonally dependent Tyrrhenian circulation, which is rich in dynamical mesoscale structures, is dominated by the interplay of local climate and the basin-wide Mediterranean circulation via the water transport across its major straits, and an adequate representation of its features represents an important modeling challenge. In this work we examine with a regionally coupled atmosphere–ocean model the changes in the Tyrrhenian circulation by the end of the 21st century under the RCP8.5 emission scenario, their driving mechanisms, and their possible impact on winter convection in the NW Mediterranean. Our model successfully reproduces the main features of the Mediterranean Sea and Tyrrhenian Basin present-day circulation. We find that toward the end of the century the winter cyclonic along-slope stream around the Tyrrhenian Basin becomes weaker. This weakening increases the wind work transferred to the mesoscale structures, which become more intense than at present in winter and summer. We also find that, in the future, the northward water transport across the Corsica Channel towards the Liguro-Provençal basin becomes smaller than today. Also, water that flows through this channel presents a stronger stratification because of a generalized warming with a freshening of upper and a saltening of intermediate waters. Both factors may contribute to the interruption of deep water formation in the Gulf of Lions by the end of the century
On the impact of atmospheric vs oceanic resolutions on the representation of the sea surface temperature in the South Eastern Tropical Atlantic
Despite the efforts of the modelling community to improve the representation of the sea surface temperature (SST) over the South Eastern Tropical Atlantic, warm biases still persist. In this work we use four different configurations of the fully-coupled AWI Climate Model (AWI-CM) which allow us to gain physics-based insight into the role of the oceanic and atmospheric resolutions of the model in the regional distribution of the SST. Our results show that a sole refinement of the oceanic resolution reduces warm biases further than a single increase of the atmospheric component. An increased oceanic resolution is required (i) to simulate properly the Agulhas Current and its associated rings; (ii) to reinforce the northward-flowing Benguela Current and (iii) to intensify coastal upwelling. The best results are obtained when both resolutions are refined. However, even in that case, warm biases persist, reflecting that some processes and feedbacks are still not optimally resolved. Our results indicate that overheating is not due to insufficient upwelling, but rather due to upwelling of waters which are warmer than observations as a result of an erroneous representation of the vertical distribution of temperature. Errors in the representation of the vertical temperature profile are the consequence of a warm bias in the simulated climate state
Impact of ocean-atmosphere coupling on regional climate: the Iberian Peninsula case
Regional models used for downscaling the European climate usually include a relatively small area of the Atlantic Ocean and are uncoupled, with the SST used as lower boundary conditions much coarser than the mesh of the regional atmospheric model. Concerns thus arise about the proper representation of the oceanic influence and the role of air-sea coupling in such experiments. A complex orography and the exposure to different air and ocean masses make the Iberian Peninsula (IP) an ideal test case for exploring the impact of including explicitly the North Atlantic in the regional domain and the added value that coupling brings to regional climate modeling. To this end, the regionally-coupled model ROM and its atmospheric component, the regional atmospheric model REMO are used in a set of coupled and uncoupled experiments forced by the ERA-Interim reanalysis and by the global climate model MPI-ESM. The atmospheric domain is the same in all simulations and includes the North Atlantic and the ocean component is global and eddy permitting. Results show that the impact of air-sea coupling on the IP winter biases can be traced back to the features of the simulated North Atlantic Ocean circulation. In summer, it is the air-sea interactions in the Mediterranean that exert the largest influence on the regional biases. Despite improvements introduced by the eddy-permitting ocean, it is suggested that a higher resolution could be needed for a correct simulation of the features of the large-scale atmospheric circulation that impact the climate of the IP
Regionally Coupled Atmosphere-Ocean-Marine Biogeochemistry Model ROM: 2. Studying the Climate Change Signal in the North Atlantic and Europe
Climate simulations for the North Atlantic and Europe for recent and future conditions simulated with the regionally coupled ROM model are analyzed and compared to the results from the MPI-ESM. The ROM simulations also include a biogeochemistry and ocean tides. For recent climate conditions, ROM generally improves the simulations compared to the driving model MPI-ESM. Reduced oceanic biases in the Northern Atlantic are found, as well as a better simulation of the atmospheric circulation, notably storm tracks and blocking. Regarding future climate projections for the 21st century following the RCP 4.5 and 8.5 scenarios, MPI-ESM and ROM largely agree qualitatively on the climate change signal over Europe. However, many important differences are identified. For example, ROM shows an SST cooling in the Subpolar Gyre, which is not present in MPI-ESM. Under the RCP8.5 scenario, ROM Arctic sea ice cover is thinner and reaches the seasonally ice-free state by 2055, well before MPI-ESM. This shows the decisive importance of higher ocean resolution and regional coupling for determining the regional responses to global warming trends. Regarding biogeochemistry, both ROM and MPI-ESM simulate a widespread decline in winter nutrient concentration in the North Atlantic of up to similar to 35%. On the other hand, the phytoplankton spring bloom in the Arctic and in the North-Western Atlantic starts earlier, and the yearly primary production is enhanced in the Arctic in the late 21st century. These results clearly demonstrate the added value of ROM to determine more detailed and more reliable climate projections at the regional scale.
Plain Language Summary We downscale present climate and future climate change projections for the North Atlantic and Europe using a regionally coupled Earth System Model including atmosphere, ocean, river runoff, and ocean biogeochemistry components. This approach allows us to attain higher spatial resolution and to a more accurate representation of key physical processes, yielding a better simulation of present climate at regional and local scales when compared to the driving global climate model. Future climate change projections show more detail at regional and local scale, mostly related to the improvement in the representation of orography and bathymetry. These improvements along with a better representation of the interactive ocean-atmosphere coupling lead to other remarkable differences with the driving global climate model: (1) colder Sea Surface Temperature in the Subpolar Gyre region, indicating a local convection collapse and a Atlantic Meridional Overturning Circulation slowdown; (2) a seasonal free-ice Arctic is reached by 2055 under RCP8.5 scenario, well before projected by the driving global climate model; and (3) stronger reduction in nutrients in the North Atlantic by the end of the 21st century. These results clearly demonstrate the added value of the regionally coupled model system to determine more reliable climate projections at the regional scale
Manejo de la inmunosupresión en pacientes trasplantados de riñón con COVID19. Estudio multicéntrico nacional derivado del registro COVID de la Sociedad Española de Nefrología
Introduction: SARS CoV2 infection has had a major impact on renal transplant patients with a high mortality in the first months of the pandemic. Intentional reduction of immunosuppressive therapy has been postulated as one of the cornerstone in the management of the infection in the absence of targeted antiviral treatment. This has been modified according to the patient`s clinical situation and its effect on renal function or anti-HLA antibodies in the medium term has not been evaluated.Objectives: Evaluate the management of immunosuppressive therapy made during SARS-CoV2 infection, as well as renal function and anti-HLA antibodies in kidney transplant patients 6 months after COVID19 diagnosis.Material and methods: Retrospective, national multicentre, retrospective study (30 centres) of kidney transplant recipients with COVID19 from 01/02/20 to 31/12/20. Clinical variables were collected from medical records and included in an anonymised database. SPSS statistical software was used for data analysis.Results: renal transplant recipients with COVID19 were included (62.6% male), with a mean age of 57.5 years. The predominant immunosuppressive treatment prior to COVID19 was triple therapy with prednisone, tacrolimus and mycophenolic acid (54.6%) followed by m-TOR inhibitor regimens (18.6%). After diagnosis of infection, mycophenolic acid was discontinued in 73.8% of patients, m-TOR inhibitor in 41.4%, tacrolimus in 10.5% and cyclosporin A in 10%. In turn, 26.9% received dexamethasone and 50.9% were started on or had their baseline prednisone dose increased. Mean creatinine before diagnosis of COVID19, at diagnosis and at 6 months was: 1.7 +/- 0.8, 2.1 +/- 1.2 and 1.8 +/- 1 mg/dl respectively (p < 0.001). 56.9% of the patients (N = 350) were monitored for anti-HLA antibodies. 94% (N = 329) had no anti-HLA changes, while 6% (N = 21) had positive anti-HLA antibodies. Among the patients with donor-specific antibodies post-COVID19 (N = 9), 7 patients (3.1%) had one immunosuppressant discontinued (5 patients had mycophenolic acid and 2 had tacrolimus), 1 patient had both immunosuppressants discontinued (3.4%) and 1 patient had no change in immunosuppression (1.1%), these differences were not significant.Conclusions: The management of immunosuppressive therapy after diagnosis of COVID19 was primarily based on discontinuation of mycophenolic acid with very discrete reductions or discontinuations of calcineurin inhibitors. This immunosuppression management did not influence renal function or changes in anti-HLA antibodies 6 months after diagnosis
Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort
Background Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis
The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients
Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation