1,051 research outputs found

    Taxation

    Get PDF

    Oral History Transcript - Elvira de la Garza

    Get PDF
    https://scholarworks.utrgv.edu/spanishlandgrantsoralhistories/1031/thumbnail.jp

    “CLUPS”: A New Culture Medium for the Axenic Growth of Entamoeba histolytica

    Get PDF
    Amebiasis remains a major health problem in Mexico. Terefore, the search for better culture media and low-cost diagnostic and therapeutic tools is fundamental. We present a new culture medium for Entamoeba histolytica which allows the microbe to preserve its virulence factors and ability to induce hepatic abscesses in animal models. Te novel CLUPS medium is an improved version of the PEHPS medium, previously designed in our laboratory. Te main diference is the substitution of raw beef liver in PEHPS by raw beef lung in the CLUPS medium. To compare the performance of three-culture media (traditional TYI-S-33, PEHPS, and CLUPS), E. histolytica trophozoites were cultured in quintuplicate, followed by the evaluation of phospholipase activity and the induction of liver abscesses in golden hamsters. E. histolytica trophozoites grew signifcantly better in CLUPS medium than in TYIS-33. Likewise, CLUPS-cultured trophozoites produced signifcantly more phospholipases than TYI-S-33-cultured trophozoites. Finally, trophozoites grown in any of the three tested media had similar potential to induce liver abscesse

    Influence of the Delta Phase in the Microstructure of the Inconel 718 subjected to “Delta-processing” Heat Treatment and Hot Deformed

    Get PDF
    AbstractInconel 718 (IN718) is a nickel base alloy widely used in the aerospace industry due to its mechanical stability at elevated temperatures. Stable δ phase with acicular morphology weakens the IN718, however, it has been found that a spherical morphology distributed in the grain boundaries acts as an anchor preventing grain growth during hot deformation. The delta processing (DP718) is a saturation of δ phase in the alloy by thermal treatment followed by thermomechanical working to control the grain growth and morphology during deformation. Two specimens (A and B) of IN718 alloy were solubilized for 1h at 1100°C WQ and aging at 900°C for 24hWQ thermal treatment, following bythermomechanical deformation. Sample A was deformed at 0.001 s -1 and sample Bat 0.01 s-1, both deformations were carried out at 960°C and the final microstructures were characterized by optical microscopy and scanning electron microscopy (SEM) in order to evaluate morphology and grainsize distribution

    Epidermal growth factor enhances osteogenic differentiation of dental pulp stem cells in vitro

    Get PDF
    Introduction: Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) play an important role in extracellular matrix mineralization, a complex process required for proper bone regeneration, one of the biggest challenges in dentistry. The purpose of this study was to evaluate the osteogenic potential of EGF and bFGF on dental pulp stem cells (DPSCs). Material and methods: Human DPSCs were isolated using CD105 magnetic microbeads and characterized by flow cytometry. To induce osteoblast differentiation, the cells were cultured in osteogenic medium supplemented with EGF or bFGF at a low concentration. Cell morphology and expression of CD146 and CD10 surface markers were analyzed using fluorescence microscopy. To measure mineralization, an alizarin red S assay was performed and typical markers of osteoblastic phenotype were evaluated by RT-PCR. Results: EGF treatment induced morphological changes and suppression of CD146 and CD10 markers. Additionally, the cells were capable of producing calcium deposits and increasing the mRNA expression to alkaline phosphatase (ALP) and osteocalcin (OCN) in relation to control groups (p < 0.001). However, bFGF treatment showed an inhibitory effect. Conclusion: These data suggests that DPSCs in combination with EGF could be an effective stem cell-based therapy for bone tissue engineering applications in periodontics and oral implantology

    X-ray determination of compressive residual Stresses in spring steel generated by high-speed water Quenching

    Get PDF
    Automotive components manufacturers use the 5160 steel in leaf and coil springs. The industrial heat treatment process consists in austenitizing followed by the oil quenching and tempering process. Typically, compressive residual stresses are induced by shot peening on the surface of automotive springs to bestow compressive residual stresses that improve the fatigue resistance and increase the service life of the parts after heat treatment. In this work, a high-speed quenching was used to achieve compressive residual stresses on the surface of AISI/SAE 5160 steel samples by producing high thermal gradients and interrupting the cooling in order to generate a case-core microstructure. A special laboratory equipment was designed and built, which uses water as the quenching media in a high-speed water chamber. The severity of the cooling was characterized with embedded thermocouples to obtain the cooling curves at different depths from the surface. Samples were cooled for various times to produce different hardened case depths. The microstructure of specimens was observed with a scanning electron microscope (SEM). X-ray diffraction (XRD) was used to estimate the magnitude of residual stresses on the surface of the specimens. Compressive residual stresses at the surface and sub-surface of about -700 MPa were obtained.Peer ReviewedPostprint (published version
    • …
    corecore