5 research outputs found

    Does aortic valve repair in valve-sparing aortic root reconstruction compromise the longevity of the procedure?

    Get PDF
    OBJECTIVES: The effect of performing aortic valve repair in combination with valve-sparing operation on the length of time for which patients are free from reoperation is unclear. The objective of this study was to determine if the performance of aortic valve repair during valve-sparing operation modified the freedom from reoperation time. METHODS: From January 2003 to July 2014, 78 patients with a mean age of 49±15 years underwent valve-sparing operation. Sixty-eight percent of these patients were male. Twenty-two (28%) aortic valve repair procedures were performed in this patient population. In the aortic valve repair + valve-sparing operation group, 77.3% of patients had moderate/severe aortic insufficiency, while in the valve-sparing operation group, 58.6% of patients had moderate/severe aortic insufficiency (ns = not significant). Additionally, 13.6% of patients in the aortic valve repair + valve-sparing operation group had functional class III/IV, while 14.2% of patients in the valve-sparing operation group had functional class III/IV (ns). RESULTS: The in-hospital and late mortality rates, for the aortic valve repair + valve-sparing operation and valve-sparing operation groups were similar, as they were 4.5% and 3.6%; and 0% and 1.8%, respectively. In the aortic valve repair + valve-sparing operation group, 0% of patients presented moderate/severe aortic insufficiency during late follow-up, while in the valve-sparing operation group, 14.2% of patients presented with moderate/severe aortic insufficiency during this period (ns). In the aortic valve repair + valve-sparing operation group, 5.3% of patients presented with functional class III/IV, while in the valve-sparing operation group, 4.2% of patients presented with functional class III/IV (ns). In the aortic valve repair + valve-sparing operation group, 0% of patients required reoperation, while in the valve-sparing operation group, 3.6% of patients required reoperation over a mean follow-up period of 1621±1156 days (75 patients). CONCLUSION: Valve-sparing operation is a safe and long-lasting procedure and performance of aortic valve repair when necessary does not increase risk of reoperation on the aortic valve

    Does aortic valve repair in valve-sparing aortic root reconstruction compromise the longevity of the procedure?

    No full text
    OBJECTIVES: The effect of performing aortic valve repair in combination with valve-sparing operation on the length of time for which patients are free from reoperation is unclear. The objective of this study was to determine if the performance of aortic valve repair during valve-sparing operation modified the freedom from reoperation time. METHODS: From January 2003 to July 2014, 78 patients with a mean age of 49±15 years underwent valve-sparing operation. Sixty-eight percent of these patients were male. Twenty-two (28%) aortic valve repair procedures were performed in this patient population. In the aortic valve repair + valve-sparing operation group, 77.3% of patients had moderate/severe aortic insufficiency, while in the valve-sparing operation group, 58.6% of patients had moderate/severe aortic insufficiency (ns = not significant). Additionally, 13.6% of patients in the aortic valve repair + valve-sparing operation group had functional class III/IV, while 14.2% of patients in the valve-sparing operation group had functional class III/IV (ns). RESULTS: The in-hospital and late mortality rates, for the aortic valve repair + valve-sparing operation and valve-sparing operation groups were similar, as they were 4.5% and 3.6%; and 0% and 1.8%, respectively. In the aortic valve repair + valve-sparing operation group, 0% of patients presented moderate/severe aortic insufficiency during late follow-up, while in the valve-sparing operation group, 14.2% of patients presented with moderate/severe aortic insufficiency during this period (ns). In the aortic valve repair + valve-sparing operation group, 5.3% of patients presented with functional class III/IV, while in the valve-sparing operation group, 4.2% of patients presented with functional class III/IV (ns). In the aortic valve repair + valve-sparing operation group, 0% of patients required reoperation, while in the valve-sparing operation group, 3.6% of patients required reoperation over a mean follow-up period of 1621±1156 days (75 patients). CONCLUSION: Valve-sparing operation is a safe and long-lasting procedure and performance of aortic valve repair when necessary does not increase risk of reoperation on the aortic valve

    Use of 3D printing in preoperative planning and training for aortic endovascular repair and aortic valve disease

    No full text
    Introduction: Three-dimensional (3D) printing has become an affordable tool for assisting heart surgeons in the aorta endovascular field, both in surgical planning, education and training of residents and students. This technique permits the construction of physical prototypes from conventional medical images by converting the anatomical information into computer aided design (CAD) files. Objective: To present the 3D printing feature on developing prototypes leading to improved aortic endovascular surgical planning, as well as transcatheter aortic valve implantation, and mainly enabling training of the surgical procedure to be performed on patient's specific condition. Methods: Six 3D printed real scale prototypes were built representing different aortic diseases, taken from real patients, to simulate the correction of the disease with endoprosthesis deployment. Results: In the hybrid room, the 3D prototypes were examined under fluoroscopy, making it possible to obtain images that clearly delimited the walls of the aorta and its details. The endovascular simulation was then able to be performed, by correctly positioning the endoprosthesis, followed by its deployment. Conclusion: The 3D printing allowed the construction of aortic diseases realistic prototypes, offering a 3D view from the two-dimensional image of computed tomography (CT) angiography, allowing better surgical planning and surgeon training in the specific case beforehand

    Use of 3D printing in preoperative planning and training for aortic endovascular repair and aortic valve disease

    No full text
    Introduction: Three-dimensional (3D) printing has become an affordable tool for assisting heart surgeons in the aorta endovascular field, both in surgical planning, education and training of residents and students. This technique permits the construction of physical prototypes from conventional medical images by converting the anatomical information into computer aided design (CAD) files. Objective: To present the 3D printing feature on developing prototypes leading to improved aortic endovascular surgical planning, as well as transcatheter aortic valve implantation, and mainly enabling training of the surgical procedure to be performed on patient's specific condition. Methods: Six 3D printed real scale prototypes were built representing different aortic diseases, taken from real patients, to simulate the correction of the disease with endoprosthesis deployment. Results: In the hybrid room, the 3D prototypes were examined under fluoroscopy, making it possible to obtain images that clearly delimited the walls of the aorta and its details. The endovascular simulation was then able to be performed, by correctly positioning the endoprosthesis, followed by its deployment. Conclusion: The 3D printing allowed the construction of aortic diseases realistic prototypes, offering a 3D view from the two-dimensional image of computed tomography (CT) angiography, allowing better surgical planning and surgeon training in the specific case beforehand

    Use of 3D Printing in Preoperative Planning and Training for Aortic Endovascular Repair and Aortic Valve Disease

    No full text
    Abstract Introduction: Three-dimensional (3D) printing has become an affordable tool for assisting heart surgeons in the aorta endovascular field, both in surgical planning, education and training of residents and students. This technique permits the construction of physical prototypes from conventional medical images by converting the anatomical information into computer aided design (CAD) files. Objective: To present the 3D printing feature on developing prototypes leading to improved aortic endovascular surgical planning, as well as transcatheter aortic valve implantation, and mainly enabling training of the surgical procedure to be performed on patient's specific condition. Methods: Six 3D printed real scale prototypes were built representing different aortic diseases, taken from real patients, to simulate the correction of the disease with endoprosthesis deployment. Results: In the hybrid room, the 3D prototypes were examined under fluoroscopy, making it possible to obtain images that clearly delimited the walls of the aorta and its details. The endovascular simulation was then able to be performed, by correctly positioning the endoprosthesis, followed by its deployment. Conclusion: The 3D printing allowed the construction of aortic diseases realistic prototypes, offering a 3D view from the two-dimensional image of computed tomography (CT) angiography, allowing better surgical planning and surgeon training in the specific case beforehand
    corecore