316 research outputs found

    Life, Death and Preferential Attachment

    Get PDF
    Scientific communities are characterized by strong stratification. The highly skewed frequency distribution of citations of published scientific papers suggests a relatively small number of active, cited papers embedded in a sea of inactive and uncited papers. We propose an analytically soluble model which allows for the death of nodes. This model provides an excellent description of the citation distributions for live and dead papers in the SPIRES database. Further, this model suggests a novel and general mechanism for the generation of power law distributions in networks whenever the fraction of active nodes is small.Comment: 5 pages, 2 figure

    Live and Dead Nodes

    Get PDF
    In this paper, we explore the consequences of a distinction between `live' and `dead' network nodes; `live' nodes are able to acquire new links whereas `dead' nodes are static. We develop an analytically soluble growing network model incorporating this distinction and show that it can provide a quantitative description of the empirical network composed of citations and references (in- and out-links) between papers (nodes) in the SPIRES database of scientific papers in high energy physics. We also demonstrate that the death mechanism alone can result in power law degree distributions for the resulting network.Comment: 12 pages, 3 figures. To be published in Computational and Mathematical Organization Theor

    Mucuna pruriens (Velvet bean) Rescues Motor, Olfactory, Mitochondrial and Synaptic Impairment in PINK1(B9) Drosophila melanogaster Genetic Model of Parkinson's Disease

    Get PDF
    The fruit fly Drosophila melanogaster (Dm) mutant for PTEN-induced putative kinase 1 (PINK1B9) gene is a powerful tool to investigate physiopathology of Parkinson's disease (PD). Using PINK1B9 mutant Dm we sought to explore the effects of Mucuna pruriens methanolic extract (Mpe), a L-Dopa-containing herbal remedy of PD. The effects of Mpe on PINK1B9 mutants, supplied with standard diet to larvae and adults, were assayed on 3–6 (I), 10–15 (II) and 20–25 (III) days old flies. Mpe 0.1% significantly extended lifespan of PINK1B9 and fully rescued olfactory response to 1-hexanol and improved climbing behavior of PINK1B9 of all ages; in contrast, L-Dopa (0.01%, percentage at which it is present in Mpe 0.1%) ameliorated climbing of only PINK1B9 flies of age step II. Transmission electron microscopy analysis of antennal lobes and thoracic ganglia of PINK1B9 revealed that Mpe restored to wild type (WT) levels both T-bars and damaged mitochondria. Western blot analysis of whole brain showed that Mpe, but not L-Dopa on its own, restored bruchpilot (BRP) and tyrosine hydroxylase (TH) expression to age-matched WT control levels. These results highlight multiple sites of action of Mpe, suggesting that its effects cannot only depend upon its L-Dopa content and support the clinical observation of Mpe as an effective medication with intrinsic ability of delaying the onset of chronic L-Dopa-induced long-term motor complications. Overall, this study strengthens the relevance of using PINK1B9 Dm as a translational model to study the properties of Mucuna pruriens for PD treatment

    Functional and morphological correlates in the drosophila LRRK2 loss-of-function model of Parkinson's disease: drug effects of Withania somnifera (Dunal) administration

    Get PDF
    The common fruit fly Drosophila melanogaster (Dm) is a simple animal species that contributed significantly to the development of neurobiology whose leucine-rich repeat kinase 2 mutants (LRRK2) loss-of-function in the WD40 domain represent a very interesting tool to look into physiopathology of Parkinson's disease (PD). Accordingly, LRRK2 Dm have also the potential to contribute to reveal innovative therapeutic approaches to its treatment. Withania somnifera Dunal, a plant that grows spontaneously also in Mediterranean regions, is known in folk medicine for its anti-inflammatory and protective properties against neurodegeneration. The aim of this study was to evaluate the neuroprotective effects of its standardized root methanolic extract (Wse) on the LRRK2 loss-of-function Dm model of PD. To this end mutant and wild type (WT) flies were administered Wse, through diet, at different concentrations as larvae and adults (L+/A+) or as adults (L-/A+) only. LRRK2 mutants have a significantly reduced lifespan and compromised motor function and mitochondrial morphology compared toWT flies 1% Wse-enriched diet, administered to Dm LRRK2 as L-/A+and improved a) locomotor activity b) muscle electrophysiological response to stimuli and also c) protected against mitochondria degeneration. In contrast, the administration of Wse to Dm LRRK2 as L+/A+, no matter at which concentration, worsened lifespan and determined the appearance of increased endosomal activity in the thoracic ganglia. These results, while confirming that the LRRK2 loss-of-function in the WD40 domain represents a valid model of PD, reveal that under appropriate concentrations Wse can be usefully employed to counteract some deficits associated with the disease. However, a careful assessment of the risks, likely related to the impaired endosomal activity, is require

    Communities and patterns of scientific collaboration in Business and Management

    Get PDF
    This is the author's accepted version of this article deposited at arXiv (arXiv:1006.1788v2 [physics.soc-ph]) and subsequently published in Scientometrics October 2011, Volume 89, Issue 1, pp 381-396. The final publication is available at link.springer.com http://link.springer.com/article/10.1007%2Fs11192-011-0439-1Author's note: 17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full pape

    Finite-time fluctuations in the degree statistics of growing networks

    Full text link
    This paper presents a comprehensive analysis of the degree statistics in models for growing networks where new nodes enter one at a time and attach to one earlier node according to a stochastic rule. The models with uniform attachment, linear attachment (the Barab\'asi-Albert model), and generalized preferential attachment with initial attractiveness are successively considered. The main emphasis is on finite-size (i.e., finite-time) effects, which are shown to exhibit different behaviors in three regimes of the size-degree plane: stationary, finite-size scaling, large deviations.Comment: 33 pages, 7 figures, 1 tabl

    Community structure and patterns of scientific collaboration in Business and Management

    Get PDF
    This is the author's accepted version of this article deposited at arXiv (arXiv:1006.1788v2 [physics.soc-ph]) and subsequently published in Scientometrics October 2011, Volume 89, Issue 1, pp 381-396. The final publication is available at link.springer.com http://link.springer.com/article/10.1007%2Fs11192-011-0439-1Author's note: 17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full pape

    Inheritance patterns in citation networks reveal scientific memes

    Full text link
    Memes are the cultural equivalent of genes that spread across human culture by means of imitation. What makes a meme and what distinguishes it from other forms of information, however, is still poorly understood. Our analysis of memes in the scientific literature reveals that they are governed by a surprisingly simple relationship between frequency of occurrence and the degree to which they propagate along the citation graph. We propose a simple formalization of this pattern and we validate it with data from close to 50 million publication records from the Web of Science, PubMed Central, and the American Physical Society. Evaluations relying on human annotators, citation network randomizations, and comparisons with several alternative approaches confirm that our formula is accurate and effective, without a dependence on linguistic or ontological knowledge and without the application of arbitrary thresholds or filters.Comment: 8 two-column pages, 5 figures; accepted for publication in Physical Review

    COVID-19 publications: Database coverage, citations, readers, tweets, news, Facebook walls, Reddit posts

    Get PDF
    © 2020 The Authors. Published by MIT Press. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1162/qss_a_00066The COVID-19 pandemic requires a fast response from researchers to help address biological, medical and public health issues to minimize its impact. In this rapidly evolving context, scholars, professionals and the public may need to quickly identify important new studies. In response, this paper assesses the coverage of scholarly databases and impact indicators during 21 March to 18 April 2020. The rapidly increasing volume of research, is particularly accessible through Dimensions, and less through Scopus, the Web of Science, and PubMed. Google Scholar’s results included many false matches. A few COVID-19 papers from the 21,395 in Dimensions were already highly cited, with substantial news and social media attention. For this topic, in contrast to previous studies, there seems to be a high degree of convergence between articles shared in the social web and citation counts, at least in the short term. In particular, articles that are extensively tweeted on the day first indexed are likely to be highly read and relatively highly cited three weeks later. Researchers needing wide scope literature searches (rather than health focused PubMed or medRxiv searches) should start with Dimensions (or Google Scholar) and can use tweet and Mendeley reader counts as indicators of likely importance
    corecore