261 research outputs found

    Sporadic high-grade malignant peripheral nerve sheath tumor of the hypoglossal nerve

    Get PDF
    Malignant tumors of peripheral nerve sheaths (MPNSTs) are rare malignant soft tissue tumors arising either from a peripheral nerve or from a pre-existing benign nerve sheath tumor. They occur most often in the context of Neurofibromatosis type-1 (NF-1) and are characterized by poor prognosis and aggressive behavior with a high rate of recurrence and distant metastases. We describe a 50-year-old woman who presented with right neck swelling, progressive dysphagia and tongue paresis. Imaging analysis revealed a mass involving the right parapharyngeal space. The tumor was excissed through a transcervical approach. At surgery, the tumor was strictly adherent to the hypoglossal nerve. Pathologic evaluation of the mass revealed a high-grade MPNST. Based on the pathological diagnosis, a clinical work-up for NF-1 was performed but it resulted negative. Occurrence of sporadic high-grade MPNST in the parapharyngeal space is rare and development from the hypoglossal nerve exceptional. As far as we know, only in two cases, both with clinical features consistent with NF1, the tumor was reported to be arised from the hypoglossal nerve

    Distinctive physiological muscle synergy patterns define the Box and Block Task execution as revealed by electromyographic features

    Get PDF
    Stroke survivors experience muscular pattern alterations of the upper limb that decrease their ability to perform daily-living activities. The Box and Block test (BBT) is widely used to assess the unilateral manual dexterity. Although BBT provides insights into functional performance, it returns limited information about the mechanisms contributing to the impaired movement. This study aims at exploring the BBT by means of muscle synergies analysis during the execution of BBT in a sample of 12 healthy participants with their dominant and non-dominant upper limb. Results revealed that: (i) the BBT can be described by 1 or 2 synergies; the number of synergies (ii) does not differ between dominant and non-dominant sides and (iii) varies considering each phase of the task; (iv) the transfer phase requires more synergies. Clinical Relevance— This preliminary study characterizes muscular synergies during the BBT task in order to establish normative patterns that could assist in understanding the neuromuscular demands and support future evaluations of stroke deficit

    Early stage of CVD graphene synthesis on Ge(001) substrate

    Full text link
    In this work we shed light on the early stage of the chemical vapor deposition of graphene on Ge(001) surfaces. By a combined use of microRaman and x-ray photoelectron spectroscopies, and scanning tunneling microscopy and spectroscopy, we were able to individuate a carbon precursor phase to graphene nucleation which coexists with small graphene domains. This precursor phase is made of C aggregates with different size, shape and local ordering which are not fully sp2 hybridized. In some atomic size regions these aggregates show a linear arrangement of atoms as well as the first signature of the hexagonal structure of graphene. The carbon precursor phase evolves in graphene domains through an ordering process, associated to a re-arrangement of the Ge surface morphology. This surface structuring represents the embryo stage of the hills-and-valleys faceting featured by the Ge(001) surface for longer deposition times, when the graphene domains coalesce to form a single layer graphene film

    Abrupt changes in the graphene on Ge(001) system at the onset of surface melting

    Full text link
    By combining scanning probe microscopy with Raman and x-ray photoelectron spectroscopies, we investigate the evolution of CVD-grown graphene/Ge(001) as a function of the deposition temperature in close proximity to the Ge melting point, highlighting an abrupt change of the graphene's quality, morphology, electronic properties and growth mode at 930 degrees. We attribute this discontinuity to the incomplete surface melting of the Ge substrate and show how incomplete melting explains a variety of diverse and long-debated peculiar features of the graphene/Ge(001), including the characteristic nanostructuring of the Ge substrate induced by graphene overgrowth. We find that the quasi-liquid Ge layer formed close to 930 degrees is fundamental to obtain high-quality graphene, while a temperature decrease of 10 degrees already results in a wrinkled and defective graphene film.Comment: in pres

    Tracking interfacial changes of graphene/Ge(110) during in-vacuum annealing

    Get PDF
    Graphene quality indicators obtained by Raman spectroscopy have been correlated to the structural changes of the graphene/Germanium interface as a function of in-vacuum thermal annealing. Specifically, it is found that graphene becomes markedly defected at 650 {\deg}C. By combining scanning tunneling microscopy, x-Ray Photoelectron Spectroscopy and Near Edge x-ray Absorption Fine Structure Spectroscopy, we conclude that these defects are due to the release of H_{2} gas trapped at the graphene/Germanium interface. The H_{2} gas was produced following the transition from the as-grown hydrogen-termination of the Ge(110) surface to the emergence of surface reconstructions in the substrate. Interestingly, a complete self-healing process is observed in graphene upon annealing to 800 {\deg}C. The subtle interplay revealed between the microscopic changes occurring at the graphene/Germanium interface and graphene's defect density is valuable for advancing graphene growth, controlled 2D-3D heterogeneous materials interfacing and integrated fabrication technology on semiconductors

    Driving with temperature the synthesis of graphene films on Ge(110)

    Full text link
    We systematically investigate the chemical vapor deposition growth of graphene on Ge(110) as a function of the deposition temperature close to the Ge melting point. By merging spectroscopic and morphological information, we find that the quality of graphene films depends critically on the growth temperature improving significantly by increasing this temperature in the 910-930 {\deg}C range. We correlate the abrupt improvement of the graphene quality to the formation of a quasi-liquid Ge surface occurring in the same temperature range, which determines increased atom diffusivity and sublimation rate. Being observed for diverse Ge orientations, this process is of general relevance for graphene synthesis on Ge

    The secretory senescence in otorhinolaryngology: Principles of treatment

    Get PDF
    Atrophy or hypofunction of the salivary gland because of aging, radiotherapy or disease causes hyposalivation and impairs the quality of life of patients by compromising mastication, swallowing and speech and by leading to a loss of taste. Moreover, hyposalivation exacerbates dental caries and induces periodontal disease, and oral candidiasis. Currently, no satisfactory therapies have been established to solve salivary hypofunction. Current treatment options for atrophy or hypofunction of the salivary glands in clinical practice are only symptomatic and include saliva substitutes and parasympathetic agonists, such as pilocarpine, to stimulate salivary flow. However, parasympathomimetics have systemic side effects, so different treatment options are necessary, and research has recently focused on this. The main strategies that have been proposed to restore salivary gland atrophy and hypofunction are gene therapy by gene activation/silencing during stem cell differentiation and by the use of viral vectors, such as adenoviruses; cell-based therapy with salivary gland cells, stem cells and non-salivary gland and/ or non-epithelial cells to regenerate damaged salivary gland cells; replacement with tissue bioengineering in which organoids from pluripotent stem cells are used in the development of organ replacement regenerative therapy. Remarkable progression in this research field has been made in the last decade, but a definitive therapy for salivary gland hypofunction has not been developed due to intrinsic challenges that come with each approach. However, with research efforts in the future, a range of precision medicine therapies may become available individualized to each patient

    Two-domains bulklike Fermi surface of Ag films deposited onto Si(111)-(7x7)

    Full text link
    Thick metallic silver films have been deposited onto Si(111)-(7x7) substrates at room temperature. Their electronic properties have been studied by using angle resolved photoelectron spectroscopy (ARPES). In addition to the electronic band dispersion along the high-symmetry directions, the Fermi surface topology of the grown films has been investigated. Using ARPES, the spectral weight distribution at the Fermi level throughout large portions of the reciprocal space has been determined at particular perpendicular electron-momentum values. Systematically, the contours of the Fermi surface of these films reflected a sixfold symmetry instead of the threefold symmetry of Ag single crystal. This loss of symmetry has been attributed to the fact that these films appear to be composed by two sets of domains rotated 60o^o from each other. Extra, photoemission features at the Fermi level were also detected, which have been attributed to the presence of surface states and \textit{sp}-quantum states. The dimensionality of the Fermi surface of these films has been analyzed studying the dependence of the Fermi surface contours with the incident photon energy. The behavior of these contours measured at particular points along the Ag Γ\GammaL high-symmetry direction puts forward the three-dimensional character of the electronic structure of the films investigated.Comment: 10 pages, 12 figures, submitted to Physical Review

    Superconductivity in Fullerides

    Full text link
    Experimental studies of superconductivity properties of fullerides are briefly reviewed. Theoretical calculations of the electron-phonon coupling, in particular for the intramolecular phonons, are discussed extensively. The calculations are compared with coupling constants deduced from a number of different experimental techniques. It is discussed why the A_3 C_60 are not Mott-Hubbard insulators, in spite of the large Coulomb interaction. Estimates of the Coulomb pseudopotential μ\mu^*, describing the effect of the Coulomb repulsion on the superconductivity, as well as possible electronic mechanisms for the superconductivity are reviewed. The calculation of various properties within the Migdal-Eliashberg theory and attempts to go beyond this theory are described.Comment: 33 pages, latex2e, revtex using rmp style, 15 figures, submitted to Review of Modern Physics, more information at http://radix2.mpi-stuttgart.mpg.de/fullerene/fullerene.htm
    corecore