12 research outputs found

    Differential effects of Cytomegalovirus carriage on the immune phenotype of middle-aged males and females

    Get PDF
    The elderly population is more susceptible to infections as a result of an altered immune response, commonly referred to as immunosenescence. Cytomegalovirus (CMV)-infection associated changes in blood lymphocytes are known to impact this process, but the interaction with gender remains unclear. Therefore, we analysed the effects and interaction of gender and CMV on the absolute numbers of a comprehensive set of naive and memory T- and B-cell subsets in people between 50 and 65 years of age. Enumeration and characterisation of lymphocyte subsets by flow cytometry was performed on fresh whole blood samples from 255 middle-aged persons. CMV-IgG serostatus was determined by ELISA. Gender was a major factor affecting immune cell numbers. CMV infection was mainly associated with an expansion of late-differentiated T-cell subsets. CMV+ males carried lower numbers of total CD4+, CD4+ central memory (CM) and follicular helper T-cells than females and CMV-males. Moreover, CMV+ males had significantly lower numbers of regulatory T (Treg)-cells and memory B-cells than CMV+ females. We here demonstrate an interaction between the effects of CMV infection and gender on T-and B-cells in middle-aged individuals. These differential effects on adaptive immunity between males and females may have implications for vaccination strategies at middle-age

    Resilience of beach grasses along a biogeomorphic successive gradient: resource availability vs. clonal integration

    Get PDF
    Coastal ecosystems are often formed through two-way interactions between plants and their physical landscape. By expanding clonally, landscape-forming plants can colonize bare unmodified environments and stimulate vegetation–landform feedback interactions. Yet, to what degree these plants rely on clonal integration for overcoming physical stress during biogeomorphological succession remains unknown. Here, we investigated the importance of clonal integration and resource availability on the resilience of two European beach grasses (i.e. Elytrigia juncea and Ammophila arenaria) over a natural biogeomorphic dune gradient from beach (unmodified system) to foredune (biologically modified system). We found plant resilience, as measured by its ability to recover and expand following disturbance (i.e. plant clipping), to be independent on the presence of rhizomal connections between plant parts. Instead, resource availability over the gradient largely determined plant resilience. The pioneer species, Elytrigia, demonstrated a high resilience to physical stress, independent of its position on the biogeomorphic gradient (beach or embryonic dune). In contrast, the later successional species (Ammophila) proved to be highly resilient on the lower end of its distribution (embryonic dune), but it did not fully recover on the foredunes, most likely as a result of nutrient deprivation. We argue that in homogenously resource-poor environments as our beach system, overall resource availability, instead of translocation through a clonal network, determines the resilience of plant species. Hence, the formation of high coastal dunes may increase the resistance of beach grasses to the physical stresses of coastal flooding, but the reduced marine nutrient input may negatively affect the resilience of plants

    Sediment availability provokes a shift from Brownian to LĂ©vy‐like clonal expansion in a dune building grass

    Get PDF
    In biogeomorphic landscapes, plant traits can steer landscape development through plant‐mediated feedback interactions. Interspecific differences in clonal expansion strategy can therefore lead to the emergence of different landscape organisations. Yet, whether landscape‐forming plants adopt different clonal expansion strategies depending on their physical environment remains to be tested. Here, we use a field survey and a complementary mesocosm approach to investigate whether sediment deposition affects the clonal expansion strategy employed by dune‐building marram grass individuals. Our results reveal a consistent shift in expansion pattern from more clumped, Brownian‐like, movement in sediment‐poor conditions, to patchier, LĂ©vy‐like, movement under high sediment supply rates. Additional model simulations illustrate that the sediment‐dependent shift in movement strategies induces a shift in optimisation of the cost–benefit relation between landscape engineering (i.e. dune formation) and expansion. Plasticity in expansion strategy may therefore allow landscape‐forming plants to optimise their engineering ability depending on their physical landscape

    In-depth immune cellular profiling reveals sex-specific associations with frailty.

    Get PDF
    In the association study, frailty was found to be associated with increased numbers of neutrophils in both men and in women. Frailer women, but not men, showed higher numbers of total and CD16- monocytes, and lower numbers of both CD56+ T cells and late differentiated CD4+ TemRA cells. The random forest algorithm confirmed all the findings of the association studies in men and women. In men, the predictive accuracy of the algorithm was too low (5.5%) to warrant additional conclusions on top of the ones derived from the association study. In women however, the predictive accuracy was higher (23.1%), additionally revealing that total T cell numbers and total lymphocyte numbers also contribute in predicting frailty

    Resilience of beach grasses along a biogeomorphic successive gradient: resource availability vs. clonal integration

    No full text
    Coastal ecosystems are often formed through two-way interactions between plants and their physical landscape. By expanding clonally, landscape-forming plants can colonize bare unmodified environments and stimulate vegetation–landform feedback interactions. Yet, to what degree these plants rely on clonal integration for overcoming physical stress during biogeomorphological succession remains unknown. Here, we investigated the importance of clonal integration and resource availability on the resilience of two European beach grasses (i.e. Elytrigia juncea and Ammophila arenaria) over a natural biogeomorphic dune gradient from beach (unmodified system) to foredune (biologically modified system). We found plant resilience, as measured by its ability to recover and expand following disturbance (i.e. plant clipping), to be independent on the presence of rhizomal connections between plant parts. Instead, resource availability over the gradient largely determined plant resilience. The pioneer species, Elytrigia, demonstrated a high resilience to physical stress, independent of its position on the biogeomorphic gradient (beach or embryonic dune). In contrast, the later successional species (Ammophila) proved to be highly resilient on the lower end of its distribution (embryonic dune), but it did not fully recover on the foredunes, most likely as a result of nutrient deprivation. We argue that in homogenously resource-poor environments as our beach system, overall resource availability, instead of translocation through a clonal network, determines the resilience of plant species. Hence, the formation of high coastal dunes may increase the resistance of beach grasses to the physical stresses of coastal flooding, but the reduced marine nutrient input may negatively affect the resilience of plants

    Characterization of the early cellular immune response induced by HPV vaccines.

    No full text
    INTRODUCTION: Current human papillomavirus (HPV) vaccines consist of virus-like particles (VLPs) which are based on the L1 protein, but they are produced by different expression systems and use different adjuvants. We performed in-depth immunophenotyping of multiple innate and adaptive immune cells after vaccination with bivalent versus nonavalent HPV vaccines. METHOD: Twenty pre-menopausal HPV-seronegative women were enrolled and randomized to receive three-doses of either the bivalent or the nonavalent HPV vaccine. Blood samples were collected at multiple time points from baseline up to 7 months after first vaccination. Four extensive EuroFlow flow cytometry antibody panels were used to monitor various immune cell subsets. Additionally, HPV-specific memory B- and T cells were determined by ELISPOT and HPV-specific antibody levels were measured by a VLP-based multiplex immunoassay. RESULTS: In both cohorts, the numbers of plasma cells expanded in the first week after both primary and tertiary vaccination. HPV16 and HPV18-specific antibody levels and memory B and T-cell responses were higher in the bivalent than in the nonavalent vaccinees one month post third vaccination. For HPV31 and HPV45-specific antibody levels this pattern was reversed. Monocytes showed an expansion one day after vaccination in both cohorts but were significantly higher in the bivalent vaccine cohort. Large heterogeneity in responses of the other cell subsets was observed between donors. CONCLUSION: This pilot study showed a consistent response of monocytes and plasma cells after vaccination and a considerable variation in other circulating immune cells in both types of HPV vaccines between donors

    Data from: Resilience of beach grasses along a biogeomorphic successive gradient: resource availability versus clonal integration

    No full text
    Data from: Resilience of beach grasses along a biogeomorphic successive gradient: resource availability versus clonal integration. Oecologia Here, we report on the effects of clonal integration and resource availability on the resilience of two common European dune building grasses (Ammophila arenaria & Elytrigia juncea). This dataset contains data from a field experiment we conducted on the west Frysian barrier island of Schiermonnikoog in the spring and summer of 2017. Full methodology on the experimental set-up can be found in the linked paper. Dataset includes measurements on the regrowth potential of patches of both Ammophila arenaria & Elytrigia juncea after clipping all shoots. In addition we report the soil and plant tissue nutrient levels of all experimental plots

    Sediment availability provokes a shift from Brownian to LĂ©vy‐like clonal expansion in a dune building grass

    No full text
    In biogeomorphic landscapes, plant traits can steer landscape development through plant‐mediated feedback interactions. Interspecific differences in clonal expansion strategy can therefore lead to the emergence of different landscape organisations. Yet, whether landscape‐forming plants adopt different clonal expansion strategies depending on their physical environment remains to be tested. Here, we use a field survey and a complementary mesocosm approach to investigate whether sediment deposition affects the clonal expansion strategy employed by dune‐building marram grass individuals. Our results reveal a consistent shift in expansion pattern from more clumped, Brownian‐like, movement in sediment‐poor conditions, to patchier, LĂ©vy‐like, movement under high sediment supply rates. Additional model simulations illustrate that the sediment‐dependent shift in movement strategies induces a shift in optimisation of the cost–benefit relation between landscape engineering (i.e. dune formation) and expansion. Plasticity in expansion strategy may therefore allow landscape‐forming plants to optimise their engineering ability depending on their physical landscape
    corecore