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Abstract
Coastal ecosystems are often formed through two-way interactions between plants and their physical landscape. By expanding 
clonally, landscape-forming plants can colonize bare unmodified environments and stimulate vegetation–landform feedback 
interactions. Yet, to what degree these plants rely on clonal integration for overcoming physical stress during biogeomorpho-
logical succession remains unknown. Here, we investigated the importance of clonal integration and resource availability on 
the resilience of two European beach grasses (i.e. Elytrigia juncea and Ammophila arenaria) over a natural biogeomorphic 
dune gradient from beach (unmodified system) to foredune (biologically modified system). We found plant resilience, as 
measured by its ability to recover and expand following disturbance (i.e. plant clipping), to be independent on the pres-
ence of rhizomal connections between plant parts. Instead, resource availability over the gradient largely determined plant 
resilience. The pioneer species, Elytrigia, demonstrated a high resilience to physical stress, independent of its position on 
the biogeomorphic gradient (beach or embryonic dune). In contrast, the later successional species (Ammophila) proved to 
be highly resilient on the lower end of its distribution (embryonic dune), but it did not fully recover on the foredunes, most 
likely as a result of nutrient deprivation. We argue that in homogenously resource-poor environments as our beach system, 
overall resource availability, instead of translocation through a clonal network, determines the resilience of plant species. 
Hence, the formation of high coastal dunes may increase the resistance of beach grasses to the physical stresses of coastal 
flooding, but the reduced marine nutrient input may negatively affect the resilience of plants.
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Introduction

Vegetated coastal ecosystems including coastal dunes, salt 
marshes and seagrass meadows underpin vital services in 
coastal zones (e.g. flood protection, water and carbon stor-
age, biodiversity enhancement) (Costanza et al. 1997; Bar-
bier et al. 2008, 2011). The dynamics of these ecosystems 
are generally controlled by biophysical feedback mecha-
nisms. These landscape-forming feedbacks are generated 
through two-way interactions between the dominant plant 
species and physical processes, ameliorating the stressful 
conditions that typically prevail in exposed coastal environ-
ments (Corenblit et al. 2011; Balke et al. 2014; Corenblit 
et al. 2015a, b; Vacchi et al. 2017). For instance, plants are 
able to attenuate flows of wind and water, thereby stimulat-
ing sedimentation and promoting their own growth by reduc-
ing physical stress (e.g. drag, salinity) (Jones et al. 1994; 
Van Hulzen et al. 2007; van der Heide et al. 2007; Zarnetske 
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et al. 2012; Silliman et al. 2015). Because these feedbacks 
require a minimum plant shoot density and patch size to 
operate adequately, feedback-dependent ecosystems can sud-
denly collapse below this threshold, and (re-)establishment 
is impeded (Christianen et al. 2014; Silliman et al. 2015; 
Angelini et al. 2016).

To rapidly overcome these density- and patch size-
dependent establishment thresholds, many landscape-form-
ing plants rely on clonal expansion as their main mode of 
dispersal (Bouma et al. 2005; Kendrick et al. 2005; Hacker 
et al. 2012, Reijers et al. 2019a). Next to the ability to gener-
ate high local shoot numbers, increase patch size and steer 
shoot organization, clonality can also greatly enhance the 
longevity of an individual (de Witte and Stöcklin 2010; 
Thomas 2013; Bricker et  al. 2018). This significantly 
increases its persistence and potential of forming complex 
biogeomorphic landscapes (Bouma et al. 2013; Strain et al. 
2017). The stressful conditions prevailing in exposed bare, 
unmodified coastal systems (e.g. intertidal mudflats, beach 
plains) hamper successful establishment of plant species. 
Expansion into these stressful environments can be facili-
tated by physiological integration of pioneer shoots with a 
sufficiently large original patch through rhizomal connec-
tions (Amsberry et al. 2000; Silinski et al. 2016). By sharing 
scarce resources such as water, carbohydrates and mineral 
nutrients over the clonal network, clonal plants can mitigate 
stressful or resource-poor conditions (Alpert and Mooney 
1986; Alpert 1996; Stuefer et al. 1994; Brewer and Bertness 
1996; Pennings and Callaway 2000; He et al. 2011). How-
ever, to what degree landscape-forming plants rely on clonal 
integration throughout the various phases of biogeomorpho-
logical succession, from bare unmodified environments to 
biologically engineered habitat, remains poorly understood 
(Kendrick et al. 2005; Corenblit et al. 2011, 2015a, b).

Here, we hypothesize that landscape-forming plants rely 
on clonal integration for overcoming establishment thresh-
olds during the early phases of biogeomorphic succession 
on bare sediment, but that the significance of clonal inte-
gration fades as the landscape becomes increasingly modi-
fied through biophysical feedbacks. We tested this general 
hypothesis in a coastal dune environment on the Western 
European coast, by studying the role of clonal integration 
for overcoming physical stress over a natural biogeomorphic 
succession gradient from beach (unmodified, stressful envi-
ronment) to foredune (modified, more benign environment).

Coastal dunes are found all over the world in wave-
dominated sandy beaches where an ample supply of ocean-
provided sediment drives the aeolian transport of sand par-
ticles (Martínez et al. 2008). Burial-tolerant beach grasses 
can trap and accumulate wind-blown sand, thereby forming 
small embryonic or incipient dunes (van Puijenbroek et al. 
2017a, b). In time, these embryonic dunes can develop into 
foredunes that form a resistant coastal defence line (Hesp 

2002; Durán and Moore 2013). As the harsh environmental 
conditions on the beach (e.g. prolonged inundation, salinity 
stress, wave exposure) limit plant growth, accreting sediment 
offers an effective escape mechanism for many dune-build-
ing grasses (Baye 1990; Maun 1994). However, by accreting 
sediment, beach grasses do not only escape from the physi-
cal and physiological stresses of living on the land–sea inter-
face, but they also lose the advantage of receiving a higher 
external nutrient input (e,g. deposit of wrack or other organic 
matter) during overwash events (Dugan et al. 2011; Schrama 
et al. 2013). As nutrient levels in coastal dune environments 
are generally low, this nutrient deprivation may seriously 
hamper the recovery rate and resilience of the dune-building 
grasses growing at the crest of the foredune.

In Northwestern Europe, the two main dune-building 
grasses, Elytrigia juncea (L.) Nevski (hereafter Elytrigia) 
and Ammophila arenaria (L.) Link (hereafter Ammophila), 
are generally found in subsequent successional stages. 
Elytrigia is the pioneer species that generates large but 
sparse vegetation patches, thereby rapidly colonizing the 
unmodified beaches to form wide and low embryonic dunes 
(van Puijenbroek et al. 2017a, b). Ammophila in contrast is 
the later successional species that generally colonizes the 
embryonic dunes to form small, but dense vegetation patches 
that lead to the formation of narrower but higher foredunes 
(van Puijenbroek et al. 2017a, b; Reijers et al. 2019a).

Based on our overarching hypothesis, we suggest that for 
coastal dune systems in general: (1) dune-forming species 
rely on clonal integration in the early successional phase 
of beach colonization, but that this effect wears off in later 
successional phases and (2) exposure to physical stress and 
resource availability synergistically determine the resilience 
of beach grasses to severe physical stress. Specifically, for 
our study system we expect the pioneer species, Elytrigia, 
to rely strongly on clonal integration to rapidly colonize the 
barren landscape and overcome the environmental harsh-
ness of growing at the land–water interface. In contrast, we 
expect that the later successional species, Ammophila, is 
less adapted to physical stress and does not rely so much on 
physiological integration between its connected dense tus-
socks to overcome physical stress. Moreover, as both physi-
cal stress and resource availability likely decrease over the 
successive dune gradient, we anticipate plants growing on 
the higher end of the species’ spatial distribution to be less 
resilient to physical stress and to rely less on distributing 
resources between their clonal networks.

To test both hypotheses, we set up a field experiment over 
a coastal dune successive gradient on a single location in a 
wide dissipative dune system on the Dutch barrier coast. We 
mimicked severe physical stress, which can be caused by 
storm surges or grazing by rabbits (Feagin et al. 2015; Har-
ris and Davy 1986a), by clipping all aboveground biomass, 
and monitored the recovery rate and nutrient availability of 
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both species as an indicator of their resilience to physical 
stress. The effect of clonal integration in overcoming physi-
cal stress for both species was tested by leaving the clonal 
network either intact or by severing the clonal plant into two 
parts. Specifically, we addressed the following questions: 
(1) How do both beach grasses respond to severe physical 
stress? (2) How does the position (high vs. low) on the suc-
cessive gradient affect the resilience of both beach grasses? 
(3) Does clonal integration help both beach grasses recover 
after severe physical stress? (4) Does the importance of 
clonal integration in overcoming physical stress decrease 
over a successive gradient when there are fewer resources 
available?

Materials and methods

Study system

The study area was located on a wide dissipative beach on 
the eastern end of the Wadden Sea island of Schiermon-
nikoog, the Netherlands (53° 30′ 27 N, 6° 18′ 40 E). With 
a mean tidal range of 2.2 m, the island is characterized as 
a mesotidal barrier island (Osté et al. 2013). The beach 
width of ~ 750 m, as measured from the 0 mean water level 
(MWL) line to the primary foredunes, is wide enough to 
support large embryonic dune complexes (van Puijenbroek 
et al. 2017a, b). The two dominant beach grasses of our 
study system, sand couch (Elytrigia juncea) and marram 
grass (Ammophila arenaria), differ in their spatial distri-
bution with Elytrigia occupying the lower ranges of the 
coastal dune gradient (i.e. beach and embryonic dunes) and 
Ammophila occupying the higher ranges from the embryonic 
dunes to the high foredunes. With an average height of 1.7 m 
above HWL, the beach region, where only Elytrigia occurs, 
is likely to get partially flooded every springtide (Osté et al. 
2013) (Fig. 1). The embryonic dune region where both spe-
cies can be found is situated ~ 60 cm higher and will get 
flooded approximately five times a year during storm surges 
(primarily during winter time) (Osté et al. 2013). Finally, 
the higher region of the coastal foredune (+ 4.6 m HWL) is 
unlikely to receive seawater intrusion during coastal over-
wash events.

Experimental design

To examine the relative importance of clonal integration 
in overcoming stress over a successive coastal dune gradi-
ent, we selected pairs of individual plants growing in close 
proximity (approximately within 5 m) and either left their 
clonal network intact or severed their rhizomal connections. 
Over a successive transect from beach to foredune, we chose 
three different locations [beach (B), embryonic dune (E) and 

foredune (F)], and on each location we selected ten pairs of 
isolated individuals of either sand couch (Elytrigia juncea) 
or marram grass (Ammophila arenaria) at the start of the 
growing season in early April 2017.

On the lowest end of the gradient on the beach (B), we 
randomly selected ten pairs of clonal Elytrigia individuals 
(number of shoots: 15 ± 1.2; 0.82 ± 0.10 g FW; N = 20). In 
the embryonic dune region (E) the species were co-occur-
ring and we selected both ten pairs of Elytrigia individuals 
(number of shoots: 43 ± 3; 1.50 ± 0.11 g FW; N = 20) and ten 
paired plots of Ammophila individuals (number of shoots: 
90 ± 10.3; 4.04 ± 0.28 g FW; N = 20). On the highest end of 
the gradient (F) only Ammophila was present (number of 
shoots: 83 ± 7.2; 3.58 ± 0.26 g FW; N = 20) (see Fig. 1). We 
created our experimental plots (60 × 30 cm) using a frame 
with sharp edges, which severed all rhizomal connections 
growing outside of the plot dimensions. Furthermore, if nec-
essary, we removed all surrounding vegetation from a 50 cm 
distance of the plots.

Of each pair (N = 10), one of the plots was randomly cho-
sen to receive the severed clonal network treatment. This 
experimental design yielded eight treatment combinations: 
Elytrigia intact beach (EIB), Elytrigia severed beach (ESB), 
Elytrigia intact embryo (EIE), Elytrigia severed embryo 
(ESE), Ammophila intact embryo (AIE), Ammophila sev-
ered embryo (ASE), Ammophila intact foredune (AIF) and 
Ammophila severed foredune (ASF), with ten replicates per 
treatment. For each experimental plot we excavated the net-
work in the middle of the plot to make sure that the shoots 
on either side of the plot were linked through rhizomal con-
nections. For the severed clonal integration treatment, we 
disrupted the rhizomal network in the middle of the experi-
mental plot, using a sharp blade, thereby dividing the clonal 
individual into two separate parts (labelled part 1 and part 
2). For both the severed and the intact clonal treatment, we 
used wooden poles to mark the division between both parts 
of the plant. At the start of the experiment, we clipped all 
aboveground biomass of all our experimental units to mimic 
severe physical stress. In this way we could investigate the 
role of clonal integration in overcoming stress over a suc-
cessive gradient for both species. The experiment lasted for 
a total of 62 days.

Soil analysis

To evaluate the potential differences in nutrient avail-
ability over the successive coastal dune gradient, we col-
lected sediment samples at the beginning of the experi-
ment in early April 2017. Sediment samples were collected 
(~ 10 cm depth), from both inside the plot between the 
plant roots, and at 50 cm from the edge of the plant. Salt 
extracts were taken from the soil samples using 17.5 g 



204	 Oecologia (2020) 192:201–212

1 3

fresh soil in 50 ml of 0.2 M NaCl, which was shaken for 
2 h. Plant-available nitrogen was estimated by colorimetri-
cally measuring concentrations of nitrate and ammonium 
in the salt extracts on an AutoAnalyzer 3 system (Bran and 
Luebbe, Norderstedt, Germany or Skalar and Seal autoana-
lyzer). Nitrate was determined by sulphanilamide, after 
reduction of nitrate to nitrite in a cadmium column (Wood 
et al. 1967) and ammonium using salicylate (Grasshoff 
and Johannsen 1972). Plant-available phosphorus was esti-
mated using a bicarbonate extract (Olsen 1954), which was 
analysed using an inductively coupled plasma emission 
(ICP) spectrophotometer (ICP-OES iCAP 6000; Thermo 
Fisher Scientific, Waltham, MA, USA).

Plant analyses

To calculate the rates of recovery and expansion of the 
different plant treatments, we counted the number of 
shoots of each experimental plot at the beginning, after 
21 days and at the end of the experiment after 62 days. 
To determine the foliar nutrient and sodium concentra-
tions as proxies for nutrient uptake and marine influence, 
we collected leaf samples of either side of the experi-
mental plots (part 1 and part 2) both at the beginning 
of the experiment and at the end, yielding a total of 320 
leaf samples (80 experimental units × 2 part per plot × 2 
time points). After drying at 60 °C to constant weight, 
we ground the samples using a ball mill (MM400, Retch, 

Fig. 1   a The location of our 
experimental plots projected on 
a digital elevation model (DEM) 
in metre above MWL [obtained 
from Actueel Hoogtebestand 
Nederland (AHN) (van der Zon 
2013)] of the beach at the east-
ern end of Schiermonnikoog. 
The dark blue rounds represent 
the Elytrigia plots located on 
the beach (B). The light blue 
round and orange diamonds rep-
resent Elytrigia and Ammophila, 
respectively, in the embryonic 
dune system (E). Finally, the red 
diamonds depict the Ammophila 
plots in the foredune region (F). 
b Topographic characteristics of 
the four different plot types. The 
full colour version of this figure 
is available online
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Haan, Germany). Subsequently, to determine C and N 
concentrations we weighed ~ 1 mg homogenized samples 
in tin cups and analysed them using an elemental analyser 
(Carlo Erba NA1500, Thermo Fisher Scientific, Waltham, 
MA, USA). Furthermore, the concentrations of P and Na 
were determined on 200 mg of the aboveground plant 
material through digestion with 4 ml of HNO3 (65%) and 
1 ml of H2O2 (30%) in a microwave oven (MLS 1200 
Mega, Milestone Inc., Sorisole, Italy), after which the 
samples were diluted and analysed using an inductively 
coupled plasma emission (ICP) spectrophotometer (ICP-
OES iCAP 6000; Thermo Fisher Scientific, Waltham, 
MA, USA).

Statistical analyses

All statistical analyses were performed using the soft-
ware program R (version 3.4.0). The main and interactive 
effects of clonal integration treatment (severed vs. intact), 
species (Elytrigia vs. Ammophila) and their position on the 
biogeomorphic gradient (low vs. high per species) per time 
point (t = 21 and t = 62 days) on the recovery rate of the 
individual plants for both time points were analysed using 
linear mixed effect models with a Satterthwaite approxi-
mation of the degrees of freedom using the pairs as a ran-
dom factor. For soil nutrient values, we used linear mixed 
effect models to assess the main effects of both position 
on the biogeomorphic gradient (beach, embryonic dune, 
foredune) and vegetation presence (within patch vs. out-
side patch) on both plant-available N and P levels, using 
the pairs as a random factor. Tukey HSD post hoc tests 
were used to separate treatment effects.

The main and interactive effects of species identity 
(Elytrigia vs. Ammophila), position on the biogeomorphic 
gradient (low vs. high per species) and time of measure-
ment (start vs. end of the experiment) on foliar nutrient 
levels (two samples per plant) were analysed using linear 
mixed effect models with a Satterthwaite approximation 
of the degrees of freedom using plot number as a random 
factor. To quantify the variation in nitrogen content (Var 
N) between the two plant parts (N1 and N2) as a proxy for 
clonal integration, we calculated the distance in the ratio 
between plant parts from a perfect 1:1 relation (1):

The results are given in (Online Resource 1 Table S1). 
For every test, normality of the residuals was checked and, 
if needed, the data were transformed using a square root or 
Box–Cox transformation. P values lower than 0.05 were 
considered statistically significant.

(1)Var N =

(

N
1

N
2

− 1

)2

Results

Recovery rates of both beach grasses

After 21  days, we observed a clear species-specific 
response to physical disturbance (i.e. clipping of shoots), 
with almost all Elytrigia plants showing full recovery, 
whereas 40% of Ammophila plants had not yet recovered 
[101.6 ± 6.1% (Elytrigia) vs. 68 ± 4.0% (Ammophila); 
F1,71 = 27.01; P < 0.001; Fig. 2a]. Strikingly, we observed 
no significant differences between clonal integration treat-
ment (intact vs. severed) for either species (F1,71 = 0.71; 
P = 0.403). We did find a clear interaction between the 
position on the biogeomorphic gradient and the species, 
with Ammophila showing less recovery on the foredune 
(51.5 ± 2.9%) than on the embryonic dunes (84.9 ± 5.3%), 
whereas Elytrigia showed a slightly better recovery in 
the embryonic dunes (110.2 ± 10.4%) than on the beach 
(93.6 ± 6.5%) (F1,71 = 17.42; P < 0.001).

At the end of the experiment (62 days after clipping 
of all aboveground biomass), all Elytrigia plants had 
expanded and gained on average 50% more shoots. In con-
trast, we found that not all Ammophila plants had recovered 
yet or had only just started expanding beyond their initial 
size [152.6 ± 10.1% (Elytrigia), 102.8 ± 8.9% (Ammoph-
ila); F1,72 = 18.16; P < 0.001; Fig. 2b]. Again, we found a 
clear position effect with the Ammophila plants growing 
on the higher end of the gradient (foredune) exhibiting less 
recovery (69.5 ± 4.3%) compared to the expanding plants 
on the embryonic dunes (136.0 ± 13.9%). For Elytrigia 
there were little differences between the plants on the 
higher end of their spatial distribution in the embryonic 
dunes (141.9 ± 10.8%) compared to the plants living on 
the beach (163.4 ± 16.9%) (F1,72 = 6.71; P = 0.011). Strik-
ingly, no significant main or interactive effects of clonal 
integration treatment were found (F1,72 = 0.09; P = 0.753).

Nutrient levels in soil and plant

Soil nutrient (N, P) levels were generally very low and 
we found no differences between plant-available N or P 
levels from sediment samples taken within the vegetation 
patch compared to samples taken at 50 cm distance from 
the vegetation (N: F1,106 = 0.32; P = 0.572; P: F1,106 = 0.73; 
P = 0.719; Fig. 3). Plant-available N levels decreased over 
the biogeomorphic succession gradient and were nearly 
twice as high on the beach and the embryonic dunes com-
pared to the higher foredunes [0.0052 mg g−1 (B&E) vs. 
0.0029 mg g−1 (F); F2,36 = 11.93; P < 0.001; Fig. 3a]. Simi-
lar to N, plant-available P decreased with distance from the 
sea and was highest at the beach (0.0013 mg g−1) and half 
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as much at the foredunes (0.0005 mg g−1) (F1,38 = 32.0; 
P < 0.001; Fig. 3b).

C:N leaf tissue ratios were lower for Elytrigia com-
pared to Ammophila [17.9 ± 0.5  g  g−1 (Elytrigia) vs. 
33.2 ± 0.8 g g−1 (Ammophila); F1,74 = 332.7; P < 0.001; 
Fig. 4a]. Furthermore, we found a strong interaction between 
species and their position along the biogeomorphic gradient, 

as we observed no significant differences between the 
two Elytrigia stages and a sharp increase in C:N ratio for 
Ammophila further up the gradient (+ 1.4 from EB to EE 
and + 14.6 from AE to AF; F1,74 = 18.9; P < 0.001). At the 
end of the experiment, the C:N ratio was higher for all treat-
ment levels with no significant interactions (F1,220 = 177.9; 
P < 0.001). By comparing the nitrogen content of shoots 

a b

Fig. 2   The relative recovery rate of both beach grasses crossed with 
both clonal integration treatments along the successive gradient 
from beach (B), embryonic dune (E) to foredune (F) after a 21 days 
and b 62 days. Elytrigia is always depicted on the left of the black 

dashed line and Ammophila on the right. The red horizontal dashed 
line indicates the 100% recovery line: above this line the plants have 
expanded compared to the start of the experiment, below the line the 
plants have decreased in shoot numbers. Error bars represent + SE

Fig. 3   Soil nutrient levels of 
a plant-available nitrogen and 
b plant-available phosphorus, 
both inside (light grey) and at 
50 cm distance of the plants 
(dark grey) along the succes-
sive gradient from beach (B) 
to embryonic dune (E) and 
foredune (F). Errors bars rep-
resent + SE. Letters depict post 
hoc (Tukey) grouping (P < 0.05)

a b
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on either end of the clonal network, we found very little 
variation between plant parts at the start of the experiment, 
but nitrogen content varied more at the end of the growing 
season [0.03 (start) vs. 0.10 (end); F1,146 = 17.48; P < 0.001; 
Online Resource 1 Figure S1a,b, Table S1]. We found no 
significant effects or interactions of neither species identity 
nor clonal integration treatment level (Online Resource 1 
Table S1).

Similar to foliar C:N ratios, the C:P ratios of Elytrigia 
shoots were on average lower than the Ammophila foliar 
ratios [187.8 ± 4.7 g g−1 (Elytrigia) and 309.7 ± 6.3 g g−1 
(Ammophila); F1,76 = 253.9; P < 0.001; Fig. 4c]. Moreover, 
we found an interaction effect of both position on the biogeo-
morphic gradient (lower vs. higher end), species identity and 
the time of measurement, which indicates that the change in 
C:P ratio for both species over time differed based on their 
position on the biogeomorphic gradient. This resulted in an 
increase in C:P ratio for Elytrigia on both the lower (+ 40 
from start to end at beach) and higher (+ 80 from start to end 
at embryonic dunes) ends of its spatial distribution, whereas 

the C:P ratio of Ammophila did not change at the lower end 
of its distribution (− 1.5 from start to end at embryonic 
dunes) but showed a decrease at the highest point (− 71 from 
start to end at foredunes) (F1,215 = 12.68; P < 0.001). The 
foliar N:P ratios reflected the C:N and C:P ratios. Again, 
the species differed with Ammophila having an on average 
lower N:P ratio than Elytrigia [9.7 ± 0.2 g g−1 (Ammophila) 
vs. 10.9 ± 0.2 g g−1 (Elytrigia); F−1,76 = 14.5; P < 0.001; 
Fig. 4b]. We found an interaction effect between species and 
time of measurement (F−1, 214 = 11.4, P < 0.001) and between 
species and their relative position on the biogeomorphic 
gradient (F1,76 = 8.0; P = 0.006) with steeper decline in N:P 
ratios reported for Ammophila between the start and the end 
of the experiment than Elytrigia [− 2.9 (AE) and − 2.5 (AF) 
vs. − 1.8 (EB) and − 1.0 (EE)]. The N:P ratios at the end of 
the experiment were highest for Elytrigia on the beach and 
lowest for Ammophila on the foredune [10.4 ± 0.4 (EB) vs. 
7.4 ± 0.3 (AF)].

Lastly, the Na content of the leaves differed between spe-
cies with higher Na values for Elytrigia than Ammophila 

Fig. 4   Foliar nutrient ratios for 
both beach grasses (Elytrigia) 
and (Ammophila) at the start 
and the end of the experiment 
along the successive biogeo-
morphic gradient from beach 
(B) to embryonic dune (E) and 
foredune (F). a C:N ratios in 
g g−1, b N:P ratios in g g−1, c 
C:P ratios in g g−1 and d Na 
contents in mg g−1. Error bars 
represent + SE

a b

c d



208	 Oecologia (2020) 192:201–212

1 3

[2.43 ± 0.09  mg  g−1 (Elytrigia) vs. 1.99 ± 0.08  mg  g−1 
(Ammophila); F1,76 = 11.92; P < 0.001; Fig. 4d]. The Na 
content decreased over the biogeomorphic gradient with 
the highest overall values in the leaves of Elytrigia on 
the beach front (2.60 ± 0.14 mg g−1) and the lowest val-
ues for Ammophila at the dune crest (1.53 ± 0.05 mg g−1) 
(F1,76 = 22.87; P < 0.001). Furthermore, we found an interac-
tion effect between the species and the time of measurement 
as the foliar Na values for Elytrigia strongly decreased over 
time (− 1.03 from start experiment to end) and the Na leaf 
content of Ammophila responded less strongly (− 0.34 from 
start to end) (F1,229 = 45.97; P < 0.001).

Discussion

We hypothesized that landscape-forming plants would rely 
on clonal integration in the pioneer stage of biogeomor-
phic succession where physical stress is high, and that this 
dependency would be less important in later stages where 
conditions are more benign through biophysical modifi-
cations of the landscape. Although previous studies from 
similar ecosystem types (e.g. salt marshes and inland dunes) 
reported beneficial effects of clonal integration in over-
coming physical stress (Pennings and Callaway 2000; Yu 
et al. 2004; Xiao et al. 2010), surprisingly, our experiment 
conducted on a Western European coastal dune system did 
not reveal any differences in recovery and expansion rates 
between connected and severed clonal individuals. Instead, 
we found the response to physical stress to differ greatly 
between the two species investigated in our experiment and 
their relative position on the biogeomorphic gradient. The 
pioneer species, Elytrigia, showed a high resilience regard-
less of its habitat (beach or embryonic dune). In contrast, 
the later successional species, Ammophila, exhibited a high 
resilience on the lower end of its spatial distribution (embry-
onic dunes), but did not fully recover on the foredunes 
(Fig. 2), possibly as a result of nutrient deprivation. Our 
results indicate that although the development of high dune 
landscapes may increase the resistance of beach grasses to 
the physical and physiological challenges of coastal flooding 
events (Baye 1990; Durán and Moore 2013), the reduced 
nutrient input may negatively impact their resilience to 
severe disturbance. In addition, our experimental results sug-
gest that clonal integration plays a negligible role in deter-
mining the resilience of dune grass species independent of 
their successive stage. Although important, we stress that 
these findings are currently based on experiments conducted 
at a single location over the course of one growing season. 
Hence, to understand how common our findings are for these 
dune grass species or landscape-forming plants in general, 
we argue that similar field studies across a diverse set of 
systems with different species and conditions are required.

Nutrient availability in coastal dunes

Harsh environmental conditions in sandy beach environ-
ments (e.g. wave impact, salinity, burial, low freshwater 
and nutrient availability) hamper plant establishment and 
outgrowth (Maun 1994). Through biophysical feedbacks, 
beach grasses can escape the detrimental effects of sea-
water flooding and enhance freshwater retention, but in 
turn they have to cope with an increase in other stressors 
such as sand burial and nutrient limitation (Maun 1998; 
Dugan et al. 2011; Feagin et al. 2015; Brown and Zin-
nert 2018). In our dissipative coastal dune system, we 
found nutrient levels to be generally very low and to 
exhibit little spatial variability and no relation to vegeta-
tion presence (Fig. 2). Furthermore, the lower influence of 
seawater intrusion over the dune biogeomorphic succes-
sion gradient (as reflected by the decrease in Na content; 
Fig. 4d), with increasing elevation and distance to the sea 
(Fig. 1), led to a decreased marine nutrient input, increas-
ing foliar C:N and C:P ratios (Hannan et al. 2007; Dugan 
et al. 2011). Although the foliar P levels also decreased 
over the gradient (Fig. 4c), previous studies have found 
that especially N availability strongly affects the growth 
of beach grasses (Willis 1965; Kooijman et  al. 1998; 
Kooijman and Besse 2002; Heyel and Day 2006). The 
occurrence of N limitation for both grasses is supported 
by relatively low N:P ratios (Güsewell 2004) that were 
lowest for both plants species at the higher end of their 
spatial distribution and decreased over time [at end experi-
ment: 9.9 g g−1 (Elytrigia embryonic dune) vs. 7.4 g g−1 
(Ammophila foredune); Fig. 4a]. The lower C:N and C:P 
ratios of Elytrigia compared to Ammophila (~ 65%) at the 
embryonic dunes, where both species were co-occurring, 
indicates a higher nutrient use efficiency for the pioneer 
species (Fig. 4a, c). Although previous studies have found 
that the contribution of biological N fixation (through 
bacteria or fungi) becomes more important over the suc-
cession gradient and can greatly enhance N availability 
(Dalton et al. 2004; Eduardo et al. 2006; Jones et al. 2008), 
we only observed a decrease of both the absolute and the 
relative (with respect to P) N availability with increasing 
distance from sea. These findings suggest that seawater 
flooding is an important nutrient source in these coastal 
dune systems. Nutrient limitation at higher elevations may 
not only decrease the resilience of dune grass species to 
severe disturbances (e.g. storm damage or grazing), but 
may also enhance their susceptibility to pathogens, such as 
root-feeding nematodes, or interact with other stressors of 
coastal dune systems such as drought (Huber and Watson 
1974; Park 1990; van der Putten et al. 1993; Dorras 2008; 
Mullins et al. 2019).
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Mechanisms to cope with low nutrient availability

To cope with the nutrient-poor conditions prevailing in the 
higher dune areas, Ammophila can recycle its own plant 
material through a litter-decomposition feedback. A foliar 
C:N ratio of > 30 makes the plants poorly degradable and 
leaves generally stay on the plant for 2 years before falling 
off (Kooijman and Besse 2002). By accumulating a high 
quantity of slowly decomposing plant material, with a very 
high N-mineralization per unit litter, Ammophila can nor-
mally regenerate sufficient nutrients for maintenance and 
further growth (Kooijman and Besse 2002). As extreme 
high storm surges may remove all standing biomass, this 
may inhibit this litter-decomposition feedback and lower the 
resilience of the Ammophila plants on the foredune. The 
especially very low N:P ratio of the plants on the foredune 
at the end of the biomass-removal experiment (~ 7.4) indi-
cates severe N deficiency (Kooijman et al. 1998; Güsewell 
2004). In contrast, the Elytrigia and Ammophila plants grow-
ing in the lower regions were able to maintain their N:P 
ratio around ~ 10 and showed no clear response to reduced 
N input. Overall, we found that in the early successional 
phases of coastal dune development (from beach to primary 
foredune), marine nutrient input strongly contributes to 
nutrient availability and increasing N limitation eventually 
reduces the resilience of Ammophila plants on the primary 
dune crest.

The importance of clonal integration in beach 
systems

Although most studies in similar ecosystem types (e.g. 
inland dunes, salt marshes) have found that clonal integra-
tion helps clonal species overcome the hostility of their 
environment (Evans 1991; Dong and Alaten 1999; Yu et al. 
2004; Liu et al. 2009; Pennings and Callaway 2000), some 
studies reported no or context-dependent effects of clonal 
integration (Wang et al. 2004; Hellström et al. 2006). In 
our experiment in a single location on a Western European 
beach system, we found no effects of rhizome severing on 
the recovery and expansion rate of our plants (Fig. 1) or on 
the nitrogen content (Online Resource 1, Figure S1a, b).

Most studies that reported a positive or facilitative effect 
of clonal integration subjected the plants to heterogeneous 
nutrient or stress levels (Liu et al. 2016). In contrast, in 
our study system we found very little spatial heterogene-
ity in soil nutrient levels, which is probably related to the 
very low influx of nutrient-rich wrack on this wide dissi-
pative beach. The low spatial variability in nutrient levels 
limits the significance of foraging for nutrients and may 
potentially explain the absent role of clonal integration in 
controlling beach grass resilience. As wrack subsidies and 
thus nutrient influxes are often spatially heterogeneously 

distributed depending on the topology of the beach, the 
nature of the wrack material and tidal characteristics (Orr 
et al. 2005), we expect a larger contribution of clonal inte-
gration on beaches with significant wrack deposition. To 
further elucidate the ecological significance of clonal inte-
gration for dune-building grasses, we suggest performing 
similar experiments under various marine subsidy condi-
tions (low vs. high wrack) and with a high or low spatial 
variability in nutrient conditions.

Escaping physical stress to accept hunger

We found the resilience of beach grasses to severe plant-
level disturbance to be largely dependent on their posi-
tion on the biogeomorphic gradient. For the pioneer spe-
cies, Elytrigia, we observed no differences in resilience, 
although the recovery rate after 21 days was slightly higher 
at the higher end of its distribution at the embryonic dunes 
(Fig. 2a). Since the plants growing on the beach were very 
small at the beginning of the growing season [av. 15 shoots 
(beach) vs. 43 shoots (embryonic dune)], we expect their 
initial lag in recovery to be the result of a lower initial 
biomass and reserves (Harris and Davy 1986b). Although 
the Elytrigia plants on the beach quickly recovered and 
showed 60% more shoots at the end of the experiment, we 
expect that storm surges in the winter season will heav-
ily impact these plants contributing to their relatively 
small size at the start of the season. The high recovery 
and expansion rate of Elytrigia, probably also related to 
its high nutrient use efficiency, likely form the basis for 
its capacity to colonize these highly dynamic areas. By 
accumulating and stabilizing wind-blown sand, the spe-
cies can eventually create a more stable environment. 
Additionally, the dispersed clonal expansion strategy of 
Elytrigia leads to the formation of low, but wide dune 
profiles which get flooded a few times a year, providing 
the delivery of marine nutrient input. For the later suc-
cessional species, Ammophila, we observed no position-
dependent differences in plant size at the beginning of 
the experiment [av. 90 shoots (embryonic dune) vs. 83 
shoots (foredune)], but we did find clear differences in its 
resilience to severe physical stress. The patchy and dense 
clonal expansion strategy of Ammophila (Reijers et al. 
2019a), in combination with the ability to grow vertically 
expanding rhizomes, leads to a higher and steeper dune 
profile, which eventually allows the species to escape high 
storm surges. The litter-nutrient feedback would normally 
allow Ammophila to grow and expand in these nutrient-
poor environments. However, when a large storm hits the 
foredune and removes all standing biomass (as we simu-
lated with our clipping treatment), we predict nutrient dep-
rivation to lead to a very low recovery potential.
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Clonality and vegetated coastal ecosystem

Many vegetated coastal ecosystems, including seagrass 
meadows, salt marshes and coastal dunes, are formed by 
clonally expanding plants (Kendrick et al. 2005; Hacker 
et al. 2012; Bouma et al. 2013). Clonal expansion allows 
plants to effectively colonize a certain area and to manipu-
late their spatial shoot organization, thereby actively facili-
tating further landscape formation through biogeomorphic 
feedbacks (Schwarz et al. 2018; Reijers et al. 2019a). We 
here show that, at least in homogeneously nutrient-poor 
environments as our beach system, the development of a 
clonal network does not necessarily increase nutrient avail-
ability, by foraging for nutrients or translocating nutrients 
through the rhizomal network. Although nitrogen content 
was very similar between plant parts at the start of the 
growing season, at the end of experimental period the vari-
ation increased for both species independent of integration 
treatment. This may indicate that for these dune grasses, 
the ecological significance of clonal integration is limited 
during the growing season. However, as our experiment 
was conducted on a single location, we do not yet know 
whether our results reflect the general behaviour of these 
dune grasses. In fact, other studies have reported posi-
tive effects of clonal integration in other dune (Yu et al. 
2004) or coastal ecosystems such as salt marshes (Pen-
nings and Callaway 2000) and seagrass meadows (Marbà 
et al. 2002). However, as these studies were also conducted 
in single habitats, it is currently not possible to draw a 
general conclusion on how and when landscape-forming 
plants in natural environments benefit from clonal integra-
tion. It does, however, indicate that both the potential to 
translocate nutrients and the effect of this trait are likely 
context dependent and may differ greatly depending on 
the clonal network architecture of the species, resource 
availability and spatio-temporal environmental heteroge-
neity (Liu et al. 2016). We therefore emphasize the need 
to integrate research on clonality and habitat modification 
(Brooker 2017) in natural settings to better understand the 
main processes determining the resilience and dynamics of 
these important feedback-dependent ecosystems.
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