18 research outputs found

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    Genetic Characterization of APOB and D17S5 AFLP Loci in a Sample from the Basque Country (Northern Spain)

    No full text
    VNTR polymorphism of AFLP loci D17S5 and APOB was analyzed in 100 unrelated individuals residing in the Basque Country by PCR amplification and polyacrylamide gel electrophoresis. Population parameters were estimated to validate these loci as routine markers in human identification. Thus, although both loci showed extensive polymorphism (with gene diversities of approximately 80% for both systems) and although concordance with Hardy-Weinberg equilibrium and linkage equilibrium was observed, comparisons with other populations displayed significant differences. Moreover, further analysis of neutral parameters limits this validation to Dl 7S5 because APOB displays excesses of both the total number of alleles and the number of rare alleles; possible reasons for this discrepancy (presence of deleterious alleles, bottleneck effect, admixture, complexity of APOB polymorphism) are discussed

    Analyses of DNA from ancient bones of a pre-Columbian Cuban woman and a child

    No full text
    Molecular anthropology has brought new possibilities into the study of ancient human populations. Amplification of chromosomal short tandem repeat (STR) loci and mitochondrial DNA (mtDNA) has been successfully employed in analyses of ancient bone material. Although several studies have reported on continental Amerindian populations, none have addressed the ancient populations inhabiting the Caribbean islands. We used STR and mtDNA analyses to study the skeletal remains of a Cuban Ciboney female adult holding an infant. Results showed that for the STR analyzed the skeletal remains shared common alleles, suggesting a relationship. Mitochondrial DNA analysis showed sequence identity, thus corroborating a possible mother-child relationship. The mtDNA sequence grouped these remains into haplogroup A, commonly found in Amerindian populations. Based on these results, we speculated on a South American origin of pre-Columbian Antilles populations and possible infanticide practices in these populations. This constitutes the first report on DNA analysis of ancient pre-Columbian Cuban populations.<br>A antropologia molecular trouxe novas possibilidades para o estudo de populações humanas antigas. A amplificação de loci em pequenos segmentos cromossômicos repetidos (short tandem repeat, STR) e de DNA mitocondrial (mtDNA) tem sido empregada com sucesso em análises de material ósseo antigo. Embora vários estudos tenham sido publicados a respeito de populações ameríndias continentais, nenhum estudou as populações antigas que habitavam as ilhas do Caribe. Nós usamos análise de STR e mtDNA para estudar os restos de ossos de uma mulher adulta da tribo Ciboney cubana carregando uma criança. Os resultados mostraram que para o STR analisado os restos ósseos compartilhavam alelos comuns, sugerindo um parentesco. A análise de mtDNA mostrou identidade de seqüência, corroborando assim uma possível relação mãe-filho. A seqüência de mtDNA alocou esses restos no haplogrupo A, comumente encontrado em populações ameríndias. Baseado nesses resultados, nós especulamos a respeito de uma origem sul-americana para as populações pré-colombianas das Antilhas e possíveis práticas infanticidas nessas populações. Este constitui o primeiro relato de análise de DNA em populações cubanas pré-colombianas antigas
    corecore