167 research outputs found

    Effect of fluorination on the molecule–substrate interactions of pentacene/Cu(1 0 0) interfaces

    Get PDF
    4 páginas, 3 figuras.-- et al.-- El pdf es la versión post-print del artículo.By means of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and nearedge X-ray absorption fine structure (NEXAFS), we study and compare the crystalline and electronic structure of fluorinated and non-fluorinated pentacene fims on Cu(1 0 0). Pentacene perfluorination strongly affects its electronic structure both in the bulk and at the metal–organic interface. While the azimuthal anisotropy of the molecule–substrate interactions on Cu(1 0 0) remains unaffected by the fluorination, the interaction mechanisms, as concluded from their effect on the core-levels and on the conduction band of the respective molecules, show a completely disparate behaviour.Peer reviewe

    Reversible Graphene decoupling by NaCl photo-dissociation

    Full text link
    We describe the reversible intercalation of Na under graphene on Ir(111) by photo-dissociation of a previously adsorbed NaCl overlayer. After room temperature evaporation, NaCl adsorbs on top of graphene forming a bilayer. With a combination of electron diffraction and photoemission techniques we demonstrate that the NaCl overlayer dissociates upon a short exposure to an X-ray beam. As a result, chlorine desorbs while sodium intercalates under the graphene, inducing an electronic decoupling from the underlying metal. Low energy electron diffraction shows the disappearance of the moir\'e pattern when Na intercalates between graphene and iridium. Analysis of the Na 2p core-level by X-ray photoelectron spectroscopy shows a chemical change from NaCl to metallic buried Na at the graphene/Ir interface. The intercalation-decoupling process leads to a n-doped graphene due to the charge transfer from the Na, as revealed by constant energy angle resolved X-ray photoemission maps. Moreover, the process is reversible by a mild annealing of the samples without damaging the graphene

    Tunable band alignment with unperturbed carrier mobility of on-surface synthesized organic semiconducting wires

    Get PDF
    This is an open access article published under an ACS AuthorChoice License.-- et al.The tunable properties of molecular materials place them among the favorites for a variety of future generation devices. In addition, to maintain the current trend of miniaturization of those devices, a departure from the present top-down production methods may soon be required and self-assembly appears among the most promising alternatives. On-surface synthesis unites the promises of molecular materials and of self-assembly, with the sturdiness of covalently bonded structures: An ideal scenario for future applications. Following this idea, we report the synthesis of functional extended nanowires by self-assembly. In particular, the products correspond to one-dimensional organic semiconductors. The uniaxial alignment provided by our substrate templates allows us to access with exquisite detail their electronic properties, including the full valence band dispersion, by combining local probes with spatial averaging techniques. We show how, by selectively doping the molecular precursors, the product's energy level alignment can be tuned without compromising the charge carrier's mobility.This work was partially funded by MIUR (PRIN 2010/11, Project 2010BNZ3F2: “DESCARTES”), by EU project PAMS (Agreement No. 610446), by the European Research Council (ERC) under the EU Horizon 2020 research and innovation programme (Grant Agreement No. 635919), by the European Community’s Seventh Framework Programme (FP7/2007-2013) CALIPSO under Grant Agreement No. 312284, by the Spanish Ministry of Science and Competitiveness (MINECO, MAT2013-46593-C6-6-P and MAT2013-46593-C6-4-P) and FEDER, by the Basque Government (Grant Nos. IT-621-13 and IT-627-13)) and by the University of Padova (Grant CPDA154322, Project AMNES).Peer Reviewe

    Self-assembly of bicomponent molecular monolayers: Adsorption height changes and their consequences

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al.Codeposition of two molecular species [copper phtalocyanine (CuPc, donor) and perfluoropentacene (PFP, acceptor)] on noble metal (111) surfaces leads to the self-assembly of an ordered mixed layer with a maximized donor-acceptor contact area. The main driving force behind this arrangement is assumed to be the intermolecular C-Hâ̄F hydrogen-bond interactions. Such interactions would be maximized for a coplanar molecular arrangement. However, precise measurement of molecule-substrate distances in the molecular mixture reveals significantly larger adsorption heights for PFP than for CuPc. Most surprisingly, instead of leveling to increase hydrogen-bond interactions, the height difference is enhanced in the blends as compared to the heights found in single-component CuPc and PFP layers. The increased height of PFP in mixed layers points to an overall reduced interaction with the underlying substrate, and its influence on electronic properties like the interface dipole is investigated through work function measurements. © 2014 American Physical Society.This work was supported by the Spanish Grants No. MAT2010-21156-C03-01 and-C03-03, as well as No. PIB2010US-00652, and by the Basque Government (Grant No. IT-621-13). D. G. O. acknowledges support from the European Union under Grant No. FP7-PEOPLE-2010-IOF-271909. We acknowledge funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant No. 226716.Peer Reviewe

    Inversed linear dichroism in F <em>K</em>-edge NEXAFS spectra of fluorinated planar aromatic molecules

    Get PDF
    et al.The symmetry and energy distribution of unoccupied molecular orbitals is addressed in this work by means of NEXAFS and density functional theory calculations for planar, fluorinated organic semiconductors (perfluorinated copper phthalocyanines and perfluoropentacene). We demonstrate how molecular orbitals with significant density of states on the fluorine atoms show different symmetry from those mainly located on C and N atoms. As a result, the angle-dependent linear dichroism in NEXAFS F K-edge spectra is inversed with respect to that in the C and N K-edges. In addition, the significant overlap in energy of π * and σ * orbitals throughout the F K-edge spectrum hampers its use for analysis of molecular orientations from angle-dependent NEXAFS measurements. © 2012 American Physical Society.J.E.O. and A.R. acknowledge funding from the Spanish MEC through Grants No. FIS2011-65702-C02-01, No. MAT2010-21156-C03-01, and No. PIB2010US-00652, and from the Basque Government through Grants No. IT-257-07 and No. IT-319-07. A.R. additionally acknowledges that financial support was provided by ACI-Promociona Grant No. ACI2009-1036 and the European Research Council Advanced Grant DYNamo (ERC-2010-AdG, Proposal No. 267374). A.S. acknowledges the support of the Research Funds of the University of Helsinki and the Academy of Finland through Contract No. 1127462, Centers of Excellence Program, and the National Graduate School in Materials Physics. J.M.G.L. acknowledges support from The Lundbeck Foundation’s Center for Atomic-Scale Materials Design and the Danish Center for Scientific Computing.Peer Reviewe

    Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)

    Get PDF
    We report the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4\u2033-dibromo-para-terphenyl as the molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can subsequently be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbon's band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in GNR-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbate's band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate

    Pauli's Principle in Probe Microscopy

    Get PDF
    Exceptionally clear images of intramolecular structure can be attained in dynamic force microscopy through the combination of a passivated tip apex and operation in what has become known as the "Pauli exclusion regime" of the tip-sample interaction. We discuss, from an experimentalist's perspective, a number of aspects of the exclusion principle which underpin this ability to achieve submolecular resolution. Our particular focus is on the origins, history, and interpretation of Pauli's principle in the context of interatomic and intermolecular interactions.Comment: This is a chapter from "Imaging and Manipulation of Adsorbates using Dynamic Force Microscopy", a book which is part of the "Advances in Atom and Single Molecule Machines" series published by Springer [http://www.springer.com/series/10425]. To be published late 201

    Magnetic interactions between radical pairs in chiral graphene nanoribbons

    Get PDF
    Open-shell graphene nanoribbons have become promising candidates for future applications, including quantum technologies. Here, we characterize magnetic states hosted by chiral graphene nanoribbons (chGNRs). The substitution of a hydrogen atom at the chGNR edge by a ketone effectively adds one pz electron to the π-electron network, producing an unpaired π-radical. A similar scenario occurs for regular ketone-functionalized chGNRs in which one ketone is missing. Two such radical states can interact via exchange coupling, and we study those interactions as a function of their relative position, which includes a remarkable dependence on the chirality, as well as on the nature of the surrounding ribbon, that is, with or without ketone functionalization. Besides, we determine the parameters whereby this type of system with oxygen heteroatoms can be adequately described within the widely used mean-field Hubbard model. Altogether, we provide insight to both theoretically model and devise GNR-based nanostructures with tunable magnetic properties.We acknowledge financial support from the MCIN/AEI/10.13039/501100011033 (Grants PID2019-107338RB-C62, PID2019-107338RB-C63, PID2020-115406GB-I00, PCI2019-111933-2 (FLAG-ERA grant LEGOCHIP), and Juan de la Cierva Grant FJC2019-041202-I), the European Union’s Horizon 2020 research and innovation program (FET-OPEN project SPRING, Grant No. 863098 and Marie Skłodowska-Curie Actions Individual Fellowship No. 101022150), the Xunta de Galicia (Centro Singular de Investigación de Galicia, 2019-2022, Grant ED431G2019/03), the European Regional Development Fund, the Basque Government (IT-1255-19), the Basque Government (PIBA Grant PI_2020_1_0014), the Basque Departamento de Educación through the Ph.D. scholarship No. PRE_2020_2_0049 (S.S.), the Spanish Research Council (LINKC20002).Peer reviewe
    corecore