21 research outputs found

    Aerobic Swim Training Restores Aortic Endothelial Function by Decreasing Superoxide Levels in Spontaneously Hypertensive Rats

    Get PDF
    OBJECTIVE: We aimed to determine whether aerobic training decreases superoxide levels, increases nitric oxide levels, and improves endothelium-dependent vasodilation in the aortas of spontaneously hypertensive rats. METHODS: Spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were distributed into 2 groups: sedentary (SHRsd and WKYsd, n=10 each) and swimming-trained (SHRtr, n=10 and WKYtr, n=10, respectively). The trained group participated in training sessions 5 days/week for 1 h/day with an additional work load of 4% of the animal’s body weight. After a 10-week sedentary or aerobic training period, the rats were euthanized. The thoracic aortas were removed to evaluate the vasodilator response to acetylcholine (10-10 to 10-4 M) with or without preincubation with L-NG-nitro-L-arginine methyl ester hydrochloride (L-NAME; 10-4 M) in vitro. The aortic tissue was also used to assess the levels of the endothelial nitric oxide synthase and nicotinamide adenine dinucleotide oxidase subunit isoforms 1 and 4 proteins, as well as the superoxide and nitrite contents. Blood pressure was measured using a computerized tail-cuff system. RESULTS: Aerobic training significantly increased the acetylcholine-induced maximum vasodilation observed in the SHRtr group compared with the SHRsd group (85.9±4.3 vs. 71.6±5.2%). Additionally, in the SHRtr group, superoxide levels were significantly decreased, nitric oxide bioavailability was improved, and the levels of the nicotinamide adenine dinucleotide oxidase subunit isoform 4 protein were decreased compared to the SHRsd group. Moreover, after training, the blood pressure of the SHRtr group decreased compared to the SHRsd group. Exercise training had no effect on the blood pressure of the WKYtr group. CONCLUSIONS: In SHR, aerobic swim training decreased vascular superoxide generation by nicotinamide adenine dinucleotide oxidase subunit isoform 4 and increased nitric oxide bioavailability, thereby improving endothelial function

    Moderate exercise training promotes adaptations in coronary blood flow and adenosine production in normotensive rats

    Get PDF
    OBJECTIVES: Aerobic exercise training prevents cardiovascular risks. Regular exercise promotes functional and structural adaptations that are associated with several cardiovascular benefits. The aim of this study is to investigate the effects of swimming training on coronary blood flow, adenosine production and cardiac capillaries in normotensive rats. METHODS: Wistar rats were randomly divided into two groups: control (C) and trained (T). An exercise protocol was performed for 10 weeks and 60 min/day with a tail overload of 5% bodyweight. Coronary blood flow was quantified with a color microsphere technique, and cardiac capillaries were quantified using light microscopy. Adenine nucleotide hydrolysis was evaluated by enzymatic activity, and protein expression was evaluated by western blot. The results are presented as the means ± SEMs (p<0.05). RESULTS: Exercise training increased the coronary blood flow and the myocardial capillary-to-fiber ratio. Moreover, the circulating and cardiac extracellular adenine nucleotide hydrolysis was higher in the trained rats than in the sedentary rats due to the increased activity and protein expression of enzymes, such as E-NTPDase and 59- nucleotidase. CONCLUSIONS: Swimming training increases coronary blood flow, number of cardiac capillaries, and adenine nucleotide hydrolysis. Increased adenosine production may be an important contributor to the enhanced coronary blood flow and angiogenesis that were observed in the exercise-trained rats; collectively, these results suggest improved myocardial perfusion

    Walking training improves systemic and local pathophysiological processes in intermittent claudication

    Get PDF
    Objective: This study examined the impact of submaximal walking training (WT) on local and systemic nitric oxide (NO) bioavailability, inflammation, and oxidative stress in patients with intermittent claudication (IC). Methods: The study employed a randomised, controlled, parallel group design and was performed in a single centre. Thirty-two men with IC were randomly allocated to two groups: WT (n = 16, two sessions/week, 15 cycles of two minutes walking at an intensity corresponding to the heart rate obtained at the pain threshold interspersed by two minutes of upright rest) and control (CO, n = 16, two sessions/week, 30 minutes of stretching). NO bioavailability (blood NO and muscle nitric oxide synthase [eNOS]), redox homeostasis (catalase [CAT], superoxide dismutase [SOD], lipid peroxidation [LPO] measured in blood and muscle), and inflammation (interleukin-6 [IL-6], C-reactive protein [CRP], tumour necrosis factor α [TNF-α], intercellular adhesion molecules [ICAM], vascular adhesion molecules [VCAM] measured in blood and muscle) were assessed at baseline and after 12 weeks. Results: WT statistically significantly increased blood NO, muscle eNOS, blood SOD and CAT, and muscle SOD and abolished the increase in circulating and muscle LPO observed in the CO group. WT decreased blood CRP, ICAM, and VCAM and muscle IL-6 and CRP and eliminated the increase in blood TNF-α and muscle TNF-α, ICAM and VCAM observed in the CO group. Conclusion: WT at an intensity of pain threshold improved NO bioavailability and decreased systemic and local oxidative stress and inflammation in patients with IC. The proposed WT protocol provides physiological adaptations that may contribute to cardiovascular health in these patients

    Effects of mercury on the arterial blood pressure of anesthetized rats

    Get PDF
    The available data suggests that hypotension caused by Hg2+ administration may be produced by a reduction of cardiac contractility or by cholinergic mechanisms. The hemodynamic effects of an intravenous injection of HgCl2 (5 mg/kg) were studied in anesthetized rats (N = 12) by monitoring left and right ventricular (LV and RV) systolic and diastolic pressures for 120 min. After HgCl2 administration the LV systolic pressure decreased only after 40 min (99 ± 3.3 to 85 ± 8.8 mmHg at 80 min). However, RV systolic pressure increased, initially slowly but faster after 30 min (25 ± 1.8 to 42 ± 1.6 mmHg at 80 min). Both right and left diastolic pressures increased after HgCl2 treatment, suggesting the development of diastolic ventricular dysfunction. Since HgCl2 could be increasing pulmonary vascular resistance, isolated lungs (N = 10) were perfused for 80 min with Krebs solution (continuous flow of 10 ml/min) containing or not 5 ”M HgCl2. A continuous increase in pulmonary vascular resistance was observed, suggesting the direct effect of Hg2+ on the pulmonary vessels (12 ± 0.4 to 29 ± 3.2 mmHg at 30 min). To examine the interactions of Hg2+ and changes in cholinergic activity we analyzed the effects of acetylcholine (Ach) on mean arterial blood pressure (ABP) in anesthetized rats (N = 9) before and after Hg2+ treatment (5 mg/kg). Using the same amount and route used to study the hemodynamic effects we also examined the effects of Hg2+ administration on heart and plasma cholinesterase activity (N = 10). The in vivo hypotensive response to Ach (0.035 to 10.5 ”g) was reduced after Hg2+ treatment. Cholinesterase activity (”M h-1 mg protein-1) increased in heart and plasma (32 and 65%, respectively) after Hg2+ treatment. In conclusion, the reduction in ABP produced by Hg2+ is not dependent on a putative increase in cholinergic activity. HgCl2 mainly affects cardiac function. The increased pulmonary vascular resistance and cardiac failure due to diastolic dysfunction of both ventricles are factors that might contribute to the reduction of cardiac output and the fall in arterial pressure

    Angiotensin converting enzyme 2 polymorphisms and postexercise hypotension in hypertensive medicated individuals

    No full text
    The renin-angiotensin aldosterone system (RAAS) is associated with diverse physiological responses and adaptations to exercise. The angiotensin converting enzyme (ACE) 2 has vasodilatory effects, which might be associated with the blood pressure (BP) responses to acute exercise. The aim of this study was to investigate the role of ACE2 polymorphisms in postexercise hypotension (PEH). Thirty-four medicated hypertensive (61·3 ± 1·7 years, 76·1 ± 2·7 kg, 160 ± 1·6 cm) men (n = 12) and women (n = 22), participated in a control and a moderate intensity exercise session in a randomized order. After both experimental sessions, they left the laboratory wearing an ambulatory BP device for 24-h monitoring. ACE2 polymorphisms (Int-1 and Int-3) were assessed by polymerase chain reaction. Over the course of 5-h monitoring, we observed a significant reduction in SBP and DBP following exercise in the AA/AG of the Int-1 polymorphism (p-interaction = 0·02 and 0·001, respectively), whereas this could not be found in the individuals homozygous G (p-interaction = 0·76 and 0·51, respectively). With regard to Int-3 polymorphism, individuals AA/AG showed a significant reduction in SBP following exercise (p-interaction <0·0001) but not for DBP (p-interaction = 0·06) whereas GG individuals showed only a significant reduction in DBP following exercise (p-interaction = 0·02). Our results suggest that ACE2 polymorphism could affect PEH; however, larger trials are needed to confirm our findings.status: publishe

    Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors role of microRNAs-16,-21, and -126

    No full text
    Aerobic exercise training (ET) lowers hypertension and improves patient outcomes in cardiovascular disease. The mechanisms of these effects are largely unknown. We hypothesized that ET modulates microRNAs (miRNAs) involved in vascularization. miRNA-16 regulates the expression of vascular endothelial growth factor and antiapoptotic protein Bcl-2. miRNA-21 targets Bcl-2. miRNA-126 functions by repressing regulators of the vascular endothelial growth factor pathway. We investigated whether miRNA-16, -21 and -126 are modulated in hypertension and by ET. Twelve-week-old male spontaneously hypertensive rats (SHRs; n=14) and Wistar Kyoto (WKY; n=14) rats were assigned to 4 groups: SHRs, trained SHRs (SHR-T), Wistar Kyoto rats, and trained Wistar Kyoto rats. ET consisted of 10 weeks of swimming. ET reduced blood pressure and heart rate in SHR-Ts. ET repaired the slow-to-fast fiber type transition in soleus muscle and the capillary rarefaction in SHR-Ts. Soleus miRNA-16 and -21 levels increased in SHRs paralleled with a decrease of 48% and 25% in vascular endothelial growth factor and Bcl-2 protein levels, respectively. Hypertension increased Bad and decreased Bcl-x and endothelial NO synthase levels and lowered p-Bad(ser112): Bad ratio. ET in SHR-Ts reduced miRNA-16 and -21 levels and elevated vascular endothelial growth factor and Bcl-2 levels. ET restored soleus endothelial NO synthase levels plus proapoptotic and antiapoptotic mediators in SHR-Ts, indicating that the balance between angiogenic and apoptotic factors may prevent microvascular abnormalities in hypertension. miRNA-126 levels were reduced in SHRs with an increase of 51% in phosphoinositol-3 kinase regulatory subunit 2 expression but normalized in SHR-Ts. Our data show that ET promoted peripheral revascularization in hypertension, which could be associated with regulation of select miRNAs, suggesting a mechanism for its potential therapeutic application in vascular diseases. (Hypertension. 2012;59[part 2]:513-520.). Online Data SupplementFundacao de Amparo a Pesquisa do Estado de Sao PauloFundacao de Amparo a Pesquisa do Estado de Sao Paulo [2010/50048-1, 2009/18370-3, 07/56771-4]National Institutes of HealthNational Institutes of Health [1 R01 HL 077602]Conselho Nacional de Desenvolvimento Cientifico e TecnologicoConselho Nacional de Desenvolvimento Cientifico e Tecnologico [159827/2011-6]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico in Brazil [307591/2009-3]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico in Brazi

    Aerobic Swim Training Restores Aortic Endothelial Function by Decreasing Superoxide Levels in Spontaneously Hypertensive Rats

    No full text
    OBJECTIVE: We aimed to determine whether aerobic training decreases superoxide levels, increases nitric oxide levels, and improves endothelium-dependent vasodilation in the aortas of spontaneously hypertensive rats. METHODS: Spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were distributed into 2 groups: sedentary (SHRsd and WKYsd, n=10 each) and swimming-trained (SHRtr, n=10 and WKYtr, n=10, respectively). The trained group participated in training sessions 5 days/week for 1 h/day with an additional work load of 4% of the animal’s body weight. After a 10-week sedentary or aerobic training period, the rats were euthanized. The thoracic aortas were removed to evaluate the vasodilator response to acetylcholine (10-10 to 10-4 M) with or without preincubation with L-NG-nitro-L-arginine methyl ester hydrochloride (L-NAME; 10-4 M) in vitro. The aortic tissue was also used to assess the levels of the endothelial nitric oxide synthase and nicotinamide adenine dinucleotide oxidase subunit isoforms 1 and 4 proteins, as well as the superoxide and nitrite contents. Blood pressure was measured using a computerized tail-cuff system. RESULTS: Aerobic training significantly increased the acetylcholine-induced maximum vasodilation observed in the SHRtr group compared with the SHRsd group (85.9±4.3 vs. 71.6±5.2%). Additionally, in the SHRtr group, superoxide levels were significantly decreased, nitric oxide bioavailability was improved, and the levels of the nicotinamide adenine dinucleotide oxidase subunit isoform 4 protein were decreased compared to the SHRsd group. Moreover, after training, the blood pressure of the SHRtr group decreased compared to the SHRsd group. Exercise training had no effect on the blood pressure of the WKYtr group. CONCLUSIONS: In SHR, aerobic swim training decreased vascular superoxide generation by nicotinamide adenine dinucleotide oxidase subunit isoform 4 and increased nitric oxide bioavailability, thereby improving endothelial function

    Swimming Training in Rats Increases Cardiac MicroRNA-126 Expression and Angiogenesis

    No full text
    DA SILVA, N. D. JR, T. FERNANDES, U. P. R. SOCI, A. W. A. MONTEIRO, M. I. PHILLIPS, and E. M. DE OLIVEIRA. Swimming Training in Rats Increases Cardiac MicroRNA-126 Expression and Angiogenesis. Med. Sci. Sports Exerc., Vol. 44, No. 8, pp. 1453-1462, 2012. Purpose: MicroRNA (miRNA)-126 is angiogenic and has two validated targets: Sprouty-related protein 1 (Spred-1) and phosphoinositol-3 kinase regulatory subunit 2 (PI3KR2), negative regulators of angiogenesis by VEGF pathway inhibition. We investigated the role of swimming training on cardiac miRNA-126 expression related to angiogenesis. Methods: Female Wistar rats were assigned to three groups: sedentary (S), training 1 (T1, moderate volume), and training 2 (T2, high volume). T1 consisted of 60 min.d(-1) of swimming, five times per week for 10 wk with 5% body overload. T2 consisted of the same protocol of T1 until the eighth week; in the ninth week, rats trained for two times a day, and in the 10th week, rats trained for three times a day. MiRNA and PI3KR2 gene expression analysis was performed by real-time polymerase chain reaction in heart muscle. We assessed markers of training, the cardiac capillary-fiber ratio, cardiac protein expression of VEGF, Spred-1, Raf-1/ERK 1/2, and PI3K/Akt/eNOS. Results: The cardiac capillary-fiber ratio increased in T1 (58%) and T2 (101%) compared with S. VEGF protein expression was increased 42% in T1 and 108% in T2. Cardiac miRNA-126 expression increased 26% (T1) and 42% (T2) compared with S, correlated with angiogenesis. The miRNA-126 target Spred-1 protein level decreased 41% (T1) and 39% (T2), which consequently favored an increase in angiogenic signaling pathway Raf-1/ERK 1/2. On the other hand, the gene expression of PI3KR2, the other miRNA-126 target, was reduced 39% (T1) and 78% (T2), and there was an increase in protein expression of components of the PI3K/Akt/eNOS signaling pathway in the trained groups. Conclusions: This study showed that aerobic training promotes an increase in the expression of miRNA-126 and that this may be related to exercise-induced cardiac angiogenesis, by indirect regulation of the VEGF pathway and direct regulation of its targets that converged in an increase in angiogenic pathways, such as MAPK and PI3K/Akt/eNOS.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [2010/50048-1, 2009/18370-3]Fundacao de Amparo a Pesquisa do Estado de Sao PauloNational Institutes of Health [1 R01 HL 077602]National Institutes of HealthConselho Nacional de Desenvolvimento Cientifico e TecnologicoConselho Nacional de Desenvolvimento Cientifico e Tecnologico [159827/2011-6]Coordenacao de Aperfeicoamento de Pessoal de Nivel SuperiorCoordenacao de Aperfeicoamento de Pessoal de Nivel SuperiorConselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil [307591/2009-3]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (Brazil

    Physiological responses to maximal and submaximal walking in patients with symptomatic peripheral artery disease

    No full text
    Background: Although maximal and submaximal walking are recommended for patients with peripheral artery disease (PAD), performing these exercises may induce different physiological responses. Objectives: To compare the acute effects of maximal and submaximal walking on post-exercise cardiovascular function, regulation, and associated pathophysiological processes in patients with symptomatic PAD. Methods: Thirty male patients underwent 2 sessions: maximal walking (Gardner’s protocol) and submaximal walking (15 bouts of 2 minutes of walking separated by 2 minutes of upright rest). In each session, blood pressure (BP), heart rate (HR), cardiac autonomic modulation (HR variability), forearm and calf blood flows (BF), vasodilatory capacity (reactive hyperemia), nitric oxide (NO), oxidative stress (lipid peroxidation), and inflammation (four markers) were measured pre-and post-walking. ANOVAs were employed, and p 0.05), and it increased after maximal walking (interaction, p 0.05). Vascular and intercellular adhesion molecules increased similarly after both maximal and submaximal walking sessions (moment, p = 0.001). Conclusions: In patients with symptomatic PAD, submaximal, but not maximal walking reduced post-exercise BP, while maximal walking maintained elevated cardiac overload during the recovery period. On the other hand, maximal and submaximal walking sessions similarly increased post-exercise HR, cardiac sympathovagal balance, and inflammation, while they did not change post-exercise NO bioavailability and oxidative stress

    Local and systemic inflammation and oxidative stress after a single bout of maximal walking in patients with symptomatic peripheral artery disease

    No full text
    Objective: The aim of this study was to assess the effects of a single bout of maximal walking on blood and muscle nitric oxide (NO) bioavailability, oxidative stress, and inflammation in symptomatic peripheral artery disease (PAD) patients. Methods: A total of 35 men with symptomatic PAD performed a graded maximal exercise test on a treadmill (3.2 km/h, 2% increase in grade every 2 minutes). Plasma samples and gastrocnemius muscle biopsies were collected preexercise and postexercise for assessment of NO bioavailability (plasma NO and muscle, endothelial NO synthase), oxidative stress and antioxidant function (lipid peroxidation [LPO], catalase [CAT], and superoxide dismutase), and inflammation (interleukin-6, C-reactive protein, tumor necrosis factor-α, intercellular adhesion molecules, and vascular adhesion molecules). The effects of the walking exercise were assessed using paired t tests or Wilcoxon tests. Results: After maximal walking, plasma NO and LPO were unchanged (P > .05), plasma CAT decreased, and all blood inflammatory markers increased (all P ≀ .05). In the disease-affected skeletal muscle, endothelial NO synthase, CAT, LPO, and all inflammatory markers increased, whereas superoxide dismutase decreased (all P ≀ .05). Conclusion: In patients with symptomatic PAD, maximal exercise induces local and systemic impairments, which may play a key role in atherogenesis. Exercise strategies that avoid maximal effort may be important to reduce local and systemic damage and enhance clinical benefits
    corecore