198 research outputs found

    Fast particle-mesh code for Milgromian dynamics

    Full text link
    Modified Newtonian dynamics (MOND) is a promising alternative to dark matter. To further test the theory, there is a need for fluid- and particle-dynamics simulations. The force in MOND is not a direct particle-particle interaction, but derives from a potential for which a nonlinear partial differential equation (PDE) needs to be solved. Normally, this makes the problem of simulating dynamical evolution computationally expensive. We intend to develop a fast particle-mesh (PM) code for MOND (the AQUAL formalism). We transformed the nonlinear equation for MOND into a system of linear PDEs plus one algebraic equation. An iterative scheme with the fast Fourier transform (FFT) produces successively better numerical approximations. The algorithm was tested for dynamical systems in MOND where analytical solutions are known: the two-body problem, a body with a circular ring, and a spherical distribution of particles in thermal equilibrium in the self-consistent potential. The PM code can accurately calculate the forces at subpixel scale and reproduces the analytical solutions. Four iterations are required for the potential, but when the spatial steps are small compared to the kernel width, one iteration is suffices. The use of a smoothing kernel for the accelerations is inevitable in order to eliminate the self-gravity of the point particles. Our PDE solver is 1515 to 4242 times as slow as a standard Poisson solver. However, the smoothing and particle propagation takes up most of the time above one particle per 10310^3 pixels. The FFTs, the smoothing, and the propagation part in the code can all be parallelized.Comment: 13 pages, 13 figure

    Safe food and feed through an integrated toolbox for mycotoxin management: the MyToolBox approach

    Get PDF
    There is a pressing need to mobilise the wealth of knowledge from the international mycotoxin research conductedover the past 25-30 years, and to perform cutting-edge research where knowledge gaps still exist. This knowledgeneeds to be integrated into affordable and practical tools for farmers and food processors along the chain inorder to reduce the risk of mycotoxin contamination of crops, feed and food. This is the mission of MyToolBox – a four-year project which has received funding from the European Commission. It mobilises a multi-actorpartnership (academia, farmers, technology small and medium sized enterprises, food industry and policystakeholders) to develop novel interventions aimed at achieving a significant reduction in crop losses due tomycotoxin contamination. Besides a field-to-fork approach, MyToolBox also considers safe use options ofcontaminated batches, such as the efficient production of biofuels. Compared to previous efforts of mycotoxin reduction strategies, the distinguishing feature of MyToolBox is to provide the recommended measures to theend users along the food and feed chain in a web-based MyToolBox platform (e-toolbox). The project focuseson small grain cereals, maize, peanuts and dried figs, applicable to agricultural conditions in the EU and China. Crop losses using existing practices are being compared with crop losses after novel pre-harvest interventionsincluding investigation of genetic resistance to fungal infection, cultural control (e.g. minimum tillage or cropdebris treatment), the use of novel biopesticides suitable for organic farming, competitive biocontrol treatment and development of novel modelling approaches to predict mycotoxin contamination. Research into post-harvestmeasures includes real-time monitoring during storage, innovative sorting of crops using vision-technology, novelmilling technology and studying the effects of baking on mycotoxins at an industrial scale

    Vicinal Surfaces and the Calogero-Sutherland Model

    Full text link
    A miscut (vicinal) crystal surface can be regarded as an array of meandering but non-crossing steps. Interactions between the steps are shown to induce a faceting transition of the surface between a homogeneous Luttinger liquid state and a low-temperature regime consisting of local step clusters in coexistence with ideal facets. This morphological transition is governed by a hitherto neglected critical line of the well-known Calogero-Sutherland model. Its exact solution yields expressions for measurable quantities that compare favorably with recent experiments on Si surfaces.Comment: 4 pages, revtex, 2 figures (.eps

    Connecting polymers to the quantum Hall plateau transition

    Full text link
    A mapping is developed between the quantum Hall plateau transition and two-dimensional self-interacting lattice polymers. This mapping is exact in the classical percolation limit of the plateau transition, and diffusive behavior at the critical energy is shown to be related to the critical exponents of a class of chiral polymers at the θ\theta-point. The exact critical exponents of the chiral polymer model on the honeycomb lattice are found, verifying that this model is in the same universality class as a previously solved model of polymers on the Manhattan lattice. The mapping is obtained by averaging analytically over the local random potentials in a previously studied lattice model for the classical plateau transition. This average generates a weight on chiral polymers associated with the classical localization length exponent ν=4/3\nu = 4/3. We discuss the differences between the classical and quantum transitions in the context of polymer models and use numerical results on higher-moment scaling laws at the quantum transition to constrain possible polymer descriptions. Some properties of the polymer models are verified by transfer matrix and Monte Carlo studies.Comment: 9 pages, 2 figure

    Field-induced Ordering in Critical Antiferromagnets

    Full text link
    Transfer-matrix scaling methods have been used to study critical properties of field-induced phase transitions of two distinct two-dimensional antiferromagnets with discrete-symmetry order parameters: triangular-lattice Ising systems (TIAF) and the square-lattice three-state Potts model (SPAF-3). Our main findings are summarised as follows. For TIAF, we have shown that the critical line leaves the zero-temperature, zero -field fixed point at a finite angle. Our best estimate of the slope at the origin is (dTc/dH)T=H=0=4.74±0.15(dT_c/dH)_{T=H=0} = 4.74 \pm 0.15. For SPAF-3 we provided evidence that the zero-field correlation length diverges as ξ(T0,H=0)exp(a/Tx)\xi(T \to 0, H=0) \simeq \exp (a/T^{x}), with x=1.08±0.13x=1.08 \pm 0.13, through analysis of the critical curve at H0H \neq 0 plus crossover arguments. For SPAF-3 we have also ascertained that the conformal anomaly and decay-of-correlations exponent behave as: (a) H=0: c=1,η=1/3c=1, \eta=1/3; (b) H0:c=1/2,η=1/4H \neq 0: c=1/2, \eta=1/4.Comment: RevTex, 7 pages, 4 eps figures, to be published in Phys. Rev.

    Magnetoresistance of Three-Constituent Composites: Percolation Near a Critical Line

    Full text link
    Scaling theory, duality symmetry, and numerical simulations of a random network model are used to study the magnetoresistance of a metal/insulator/perfect conductor composite with a disordered columnar microstructure. The phase diagram is found to have a critical line which separates regions of saturating and non-saturating magnetoresistance. The percolation problem which describes this line is a generalization of anisotropic percolation. We locate the percolation threshold and determine the t = s = 1.30 +- 0.02, nu = 4/3 +- 0.02, which are the same as in two-constituent 2D isotropic percolation. We also determine the exponents which characterize the critical dependence on magnetic field, and confirm numerically that nu is independent of anisotropy. We propose and test a complete scaling description of the magnetoresistance in the vicinity of the critical line.Comment: Substantially revised version; description of behavior in finite magnetic fields added. 7 pages, 7 figures, submitted to PR

    Interfacial adsorption phenomena of the three-dimensional three-state Potts model

    Full text link
    We study the interfacial adsorption phenomena of the three-state ferromagnetic Potts model on the simple cubic lattice by the Monte Carlo method. Finite-size scaling analyses of the net-adsorption yield the evidence of the phase transition being of first-order and kBTC/J=1.8166(2)k_{\rm B} T_{\rm C} / J = 1.8166 (2).Comment: 14 page

    The Chiral Potts Models Revisited

    Full text link
    In honor of Onsager's ninetieth birthday, we like to review some exact results obtained so far in the chiral Potts models and to translate these results into language more transparent to physicists, so that experts in Monte Carlo calculations, high and low temperature expansions, and various other methods, can use them. We shall pay special attention to the interfacial tension ϵr\epsilon_r between the kk state and the krk-r state. By examining the ground states, it is seen that the integrable line ends at a superwetting point, on which the relation ϵr=rϵ1\epsilon_r=r\epsilon_1 is satisfied, so that it is energetically neutral to have one interface or more. We present also some partial results on the meaning of the integrable line for low temperatures where it lives in the non-wet regime. We make Baxter's exact results more explicit for the symmetric case. By performing a Bethe Ansatz calculation with open boundary conditions we confirm a dilogarithm identity for the low-temperature expansion which may be new. We propose a new model for numerical studies. This model has only two variables and exhibits commensurate and incommensurate phase transitions and wetting transitions near zero temperature. It appears to be not integrable, except at one point, and at each temperature there is a point, where it is almost identical with the integrable chiral Potts model.Comment: J. Stat. Phys., LaTeX using psbox.tex and AMS fonts, 69 pages, 30 figure

    Safe food and feed through an integrated toolbox for mycotoxin management: the MyToolBox approach

    Get PDF
    There is a pressing need to mobilise the wealth of knowledge from the international mycotoxin research conducted over the past 25-30 years, and to perform cutting-edge research where knowledge gaps still exist. This knowledge needs to be integrated into affordable and practical tools for farmers and food processors along the chain in order to reduce the risk of mycotoxin contamination of crops, feed and food. This is the mission of MyToolBox – a four-year project which has received funding from the European Commission. It mobilises a multi-actor partnership (academia, farmers, technology small and medium sized enterprises, food industry and policy stakeholders) to develop novel interventions aimed at achieving a significant reduction in crop losses due to mycotoxin contamination. Besides a field-to-fork approach, MyToolBox also considers safe use options of contaminated batches, such as the efficient production of biofuels. Compared to previous efforts of mycotoxin reduction strategies, the distinguishing feature of MyToolBox is to provide the recommended measures to the end users along the food and feed chain in a web-based MyToolBox platform (e-toolbox). The project focuses on small grain cereals, maize, peanuts and dried figs, applicable to agricultural conditions in the EU and China. Crop losses using existing practices are being compared with crop losses after novel pre-harvest interventions including investigation of genetic resistance to fungal infection, cultural control (e.g. minimum tillage or crop debris treatment), the use of novel biopesticides suitable for organic farming, competitive biocontrol treatment and development of novel modelling approaches to predict mycotoxin contamination. Research into post-harvest measures includes real-time monitoring during storage, innovative sorting of crops using vision-technology, novel milling technology and studying the effects of baking on mycotoxins at an industrial scale

    Vicinal Surface with Langmuir Adsorption: A Decorated Restricted Solid-on-solid Model

    Full text link
    We study the vicinal surface of the restricted solid-on-solid model coupled with the Langmuir adsorbates which we regard as two-dimensional lattice gas without lateral interaction. The effect of the vapor pressure of the adsorbates in the environmental phase is taken into consideration through the chemical potential. We calculate the surface free energy ff, the adsorption coverage Θ\Theta, the step tension γ\gamma, and the step stiffness γ~\tilde{\gamma} by the transfer matrix method combined with the density-matrix algorithm. Detailed step-density-dependence of ff and Θ\Theta is obtained. We draw the roughening transition curve in the plane of the temperature and the chemical potential of adsorbates. We find the multi-reentrant roughening transition accompanying the inverse roughening phenomena. We also find quasi-reentrant behavior in the step tension.Comment: 7 pages, 12 figures (png format), RevTeX 3.1, submitted to Phys. Rev.
    corecore