Scaling theory, duality symmetry, and numerical simulations of a random
network model are used to study the magnetoresistance of a
metal/insulator/perfect conductor composite with a disordered columnar
microstructure. The phase diagram is found to have a critical line which
separates regions of saturating and non-saturating magnetoresistance. The
percolation problem which describes this line is a generalization of
anisotropic percolation. We locate the percolation threshold and determine the
t = s = 1.30 +- 0.02, nu = 4/3 +- 0.02, which are the same as in
two-constituent 2D isotropic percolation. We also determine the exponents which
characterize the critical dependence on magnetic field, and confirm numerically
that nu is independent of anisotropy. We propose and test a complete scaling
description of the magnetoresistance in the vicinity of the critical line.Comment: Substantially revised version; description of behavior in finite
magnetic fields added. 7 pages, 7 figures, submitted to PR