7 research outputs found

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Simultaneous Immunoglobulin A and G Glycopeptide Profiling for High-Throughput Applications

    No full text
    Immunoglobulin (Ig) glycosylation is recognized for its influence on Ig turnover and effector functions. However, the large-scale profiling of Ig glycosylation in a biomedical setting is challenged by the existence of different Ig isotypes and subclasses, their varying serum concentrations, and the presence of multiple glycosylation sites per Ig. Here, a high-throughput nanoliquid chromatography (LC)- mass spectrometry (MS)-based method for simultaneous analysis of IgG and IgA glycopeptides was developed and applied on a serum sample set from 185 healthy donors. Sample preparation from minute amounts of serum was performed in 96-well plate format. Prior to trypsin digestion, IgG and IgA were enriched simultaneously, followed by a one-step denaturation, reduction, and alkylation. The obtained nanoLC-MS data were subjected to semiautomated, targeted feature integration and quality control. The combined and simplified protocol displayed high overall method repeatability, as assessed using pooled plasma and serum standards. Taking all samples together, 143 individual N- and O-glycopeptides were reliably quantified. These glycopeptides were attributable to 11 different peptide backbones, derived from IgG1, IgG2/3, IgG4, IgA1, IgA2, and the joining chain from dimeric IgA. Using this method, novel associations were found between IgA N- and O-glycosylation and age. Furthermore, previously reported associations of IgG Fc glycosylation with age in healthy individuals were confirmed. In conclusion, the new method paves the way for high-throughput multiprotein plasma glycoproteomics

    Simultaneous Immunoglobulin A and G Glycopeptide Profiling for High-Throughput Applications

    Get PDF
    Immunoglobulin (Ig) glycosylation is recognized for its influence on Ig turnover and effector functions. However, the large-scale profiling of Ig glycosylation in a biomedical setting is challenged by the existence of different Ig isotypes and subclasses, their varying serum concentrations, and the presence of multiple glycosylation sites per Ig. Here, a high-throughput nanoliquid chromatography (LC)- mass spectrometry (MS)-based method for simultaneous analysis of IgG and IgA glycopeptides was developed and applied on a serum sample set from 185 healthy donors. Sample preparation from minute amounts of serum was performed in 96-well plate format. Prior to trypsin digestion, IgG and IgA were enriched simultaneously, followed by a one-step denaturation, reduction, and alkylation. The obtained nanoLC-MS data were subjected to semiautomated, targeted feature integration and quality control. The combined and simplified protocol displayed high overall method repeatability, as assessed using pooled plasma and serum standards. Taking all samples together, 143 individual N- and O-glycopeptides were reliably quantified. These glycopeptides were attributable to 11 different peptide backbones, derived from IgG1, IgG2/3, IgG4, IgA1, IgA2, and the joining chain from dimeric IgA. Using this method, novel associations were found between IgA N- and O-glycosylation and age. Furthermore, previously reported associations of IgG Fc glycosylation with age in healthy individuals were confirmed. In conclusion, the new method paves the way for high-throughput multiprotein plasma glycoproteomics

    Functional attributes of antibodies, effector cells, and target cells affecting nk cell-mediated antibody-dependent cellular cytotoxicity

    No full text
    Ab-dependent cellular cytotoxicity (ADCC) is one of the most important effector mechanisms of tumor-targeting Abs in current immunotherapies. In ADCC and other Ab-dependent activation of myeloid effector cells, close cell-cell contact (between effector and target cell) and formation of immunological synapses are required. However, we still lack basic knowledge on the principal factors influencing ADCC potential by therapeutic Abs. In this study we investigated the combined roles of five factors affecting human NK cell-mediated ADCC, namely: 1) Ag density, 2) target cell membrane composition, 3) IgG FcgR polymorphism, 4) FcgR-blocking cytophilic Abs, and 5) Ab fucosylation.We demonstrate that the magnitude of NK cell-mediated ADCC responses is predominantly influenced by Ag density and Ab fucosylation. Afucosylation consistently induced efficient ADCC, even at very low Ag density, where fucosylated target Abs did not elicit ADCC. On the side of the effector cell, the FcgRIIIa-Val/Phe158 polymorphism influenced ADCC potency, with NK cells expressing the Val158 variant showing more potent ADCC. In addition, we identified the sialic acid content of the target cell membrane as an important inhibitory factor for ADCC. Furthermore, we found that the presence and glycosylation status of aspecific endogenous Abs bound to NK cell FcgRIIIa (cytophilic Abs) determine the blocking effect on ADCC. These five parameters affect the potency of Abs in vitro and should be further tested as predictors of in vivo capacity

    IgG Fc sialylation is regulated during the germinal center reaction following immunization with different adjuvants

    Get PDF
    Background: Effector functions of IgG Abs are regulated by their Fc N-glycosylation pattern. IgG Fc glycans that lack galactose and terminal sialic acid residues correlate with the severity of inflammatory (auto)immune disorders and have also been linked to protection against viral infection and discussed in the context of vaccine-induced protection. In contrast, sialylated IgG Abs have shown immunosuppressive effects. Objective: We sought to investigate IgG glycosylation programming during the germinal center (GC) reaction following immunization of mice with a foreign protein antigen and different adjuvants. Methods: Mice were analyzed for GC T-cell, B-cell, and plasma cell responses, as well as for antigen-specific serum IgG subclass titers and Fc glycosylation patterns. Results: Different adjuvants induce distinct IgG(+) GC B-cell responses with specific transcriptomes and expression levels of the alpha 2,6-sialyltransferase responsible for IgG sialylation that correspond to distinct serum IgG Fc glycosylation patterns. Low IgG Fc sialylation programming in GC B cells was overall highly dependent on the Foxp3(-) follicular helper T (TFH) cell-inducing cytokine IL-6, here in particular induced by water-inoil adjuvants and Mycobacterium tuberculosis. Furthermore, low IgG Fc sialylation programming was dependent on adjuvants that induced IL-27 receptor-dependent IFN-gamma(+) TFH1 cells, IL-6/IL-23-dependent IL-17A(+) T-FH17 cells, and high ratios of TFH cells to Foxp31 follicular regulatory T cells. Here, the 2 latter were dependent on M tuberculosis and its cord factor. Conclusion: This study's findings regarding adjuvant-dependent GC responses and IgG glycosylation programming may aid in the development of novel vaccination strategies to induce IgG Abs with both high affinity and defined Fc glycosylation patterns in the GC
    corecore