452 research outputs found

    Topographical Organization of Mu and Beta Band Activity Associated with Hand and Foot Movements in Patients with Perirolandic Lesions

    Get PDF
    To study the topographical organization of mu and beta band event-related desynchronization (ERD) associated with voluntary hand and foot movements, we used magnetoencephalographic (MEG) recordings from 19 patients with perirolandic lesions. Synthetic aperture magnetometry (SAM) was used to detect and localize changes in the mu (7 - 11 Hz) and beta (13 - 30 Hz) frequency bands associated with repetitive movements of the hand and foot and overlaid on individual coregistered magnetic resonance (MR) images. Hand movements showed homotopic and contralateral ERD at the sensorimotor (S/M) cortex in the majority of cases for mu and to a lesser extent for beta rhythms. Foot movements showed an increased heterotopic distribution with bilateral and ipsilateral ERD compared to hand movements. No systematic topographical segregation between mu and beta ERD could be observed. In patients with perirolandic lesions, the mu and beta band spatial characteristics associated with hand movements retain the expected functional-anatomical boundaries to a large extent. Foot movements have altered patterns of mu and beta band ERD, which may give more insight into the differential functional role of oscillatory activity in different voluntary movements

    Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling

    Get PDF
    Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors

    Spherical harmonic decomposition applied to spatial-temporal analysis of human high-density EEG

    Full text link
    We demonstrate an application of spherical harmonic decomposition to analysis of the human electroencephalogram (EEG). We implement two methods and discuss issues specific to analysis of hemispherical, irregularly sampled data. Performance of the methods and spatial sampling requirements are quantified using simulated data. The analysis is applied to experimental EEG data, confirming earlier reports of an approximate frequency-wavenumber relationship in some bands.Comment: 12 pages, 8 figures, submitted to Phys. Rev. E, uses APS RevTeX style

    Tetraspanin 6: a pivotal protein of the multiple vesicular body determining exosome release and lysosomal degradation of amyloid precursor protein fragments

    Get PDF
    BACKGROUND: The mechanisms behind Aβ-peptide accumulation in non-familial Alzheimer’s disease (AD) remain elusive. Proteins of the tetraspanin family modulate Aβ production by interacting to γ-secretase. METHODS: We searched for tetraspanins with altered expression in AD brains. The function of the selected tetraspanin was studied in vitro and the physiological relevance of our findings was confirmed in vivo. RESULTS: Tetraspanin-6 (TSPAN6) is increased in AD brains and overexpression in cells exerts paradoxical effects on Amyloid Precursor Protein (APP) metabolism, increasing APP-C-terminal fragments (APP-CTF) and Aβ levels at the same time. TSPAN6 affects autophagosome-lysosomal fusion slowing down the degradation of APP-CTF. TSPAN6 recruits also the cytosolic, exosome-forming adaptor syntenin which increases secretion of exosomes that contain APP-CTF. CONCLUSIONS: TSPAN6 is a key player in the bifurcation between lysosomal-dependent degradation and exosome mediated secretion of APP-CTF. This corroborates the central role of the autophagosomal/lysosomal pathway in APP metabolism and shows that TSPAN6 is a crucial player in APP-CTF turnover

    Impact of the COVID-19 pandemic on breast cancer incidence and tumor stage in the Netherlands and Norway:A population-based study

    Get PDF
    BACKGROUND: Comparing the impact of the COVID-19 pandemic on the incidence of newly diagnosed breast tumors and their tumor stage between the Netherlands and Norway will help us understand the effect of differences in governmental and social reactions towards the pandemic.METHODS: Women newly diagnosed with breast cancer in 2017-2021 were selected from the Netherlands Cancer Registry and the Cancer Registry of Norway. The crude breast cancer incidence rate (tumors per 100,000 women) during the first (March-September 2020), second (October 2020-April 2021), and Delta COVID-19 wave (May-December 2021) was compared with the incidence rate in the corresponding periods in 2017, 2018, and 2019. Incidence rates were stratified by age group, method of detection, and clinical tumor stage.RESULTS: During the first wave breast cancer incidence declined to a larger extent in the Netherlands than in Norway (27.7% vs. 17.2% decrease, respectively). In both countries, incidence decreased in women eligible for screening. In the Netherlands, incidence also decreased in women not eligible for screening. During the second wave an increase in the incidence of stage IV tumors in women aged 50-69 years was seen in the Netherlands. During the Delta wave an increase in overall incidence and incidence of stage I tumors was seen in Norway.CONCLUSION: Alterations in breast cancer incidence and tumor stage seem related to a combined effect of the suspension of the screening program, health care avoidance due to the severity of the pandemic, and other unknown factors.</p

    Effects of dipole position, orientation and noise on the accuracy of EEG source localization

    Get PDF
    BACKGROUND: The electroencephalogram (EEG) reflects the electrical activity in the brain on the surface of scalp. A major challenge in this field is the localization of sources in the brain responsible for eliciting the EEG signal measured at the scalp. In order to estimate the location of these sources, one must correctly model the sources, i.e., dipoles, as well as the volume conductor in which the resulting currents flow. In this study, we investigate the effects of dipole depth and orientation on source localization with varying sets of simulated random noise in 4 realistic head models. METHODS: Dipole simulations were performed using realistic head models and using the boundary element method (BEM). In all, 92 dipole locations placed in temporal and parietal regions of the head with varying depth and orientation were investigated along with 6 different levels of simulated random noise. Localization errors due to dipole depth, orientation and noise were investigated. RESULTS: The results indicate that there are no significant differences in localization error due tangential and radial dipoles. With high levels of simulated Gaussian noise, localization errors are depth-dependant. For low levels of added noise, errors are similar for both deep and superficial sources. CONCLUSION: It was found that if the signal-to-noise ratio is above a certain threshold, localization errors in realistic head models are, on average the same for deep and superficial sources. As the noise increases, localization errors increase, particularly for deep sources

    Airborne Drones for Water Quality Mapping in Inland, Transitional and Coastal Waters—MapEO Water Data Processing and Validation

    Get PDF
    Using airborne drones to monitor water quality in inland, transitional or coastal surface waters is an emerging research field. Airborne drones can fly under clouds at preferred times, capturing data at cm resolution, filling a significant gap between existing in situ, airborne and satellite remote sensing capabilities. Suitable drones and lightweight cameras are readily available on the market, whereas deriving water quality products from the captured image is not straightforward; vignetting effects, georeferencing, the dynamic nature and high light absorption efficiency of water, sun glint and sky glint effects require careful data processing. This paper presents the data processing workflow behind MapEO water, an end-to-end cloud-based solution that deals with the complexities of observing water surfaces and retrieves water-leaving reflectance and water quality products like turbidity and chlorophyll-a (Chl-a) concentration. MapEO water supports common camera types and performs a geometric and radiometric correction and subsequent conversion to reflectance and water quality products. This study shows validation results of water-leaving reflectance, turbidity and Chl-a maps derived using DJI Phantom 4 pro and MicaSense cameras for several lakes across Europe. Coefficients of determination values of 0.71 and 0.93 are obtained for turbidity and Chl-a, respectively. We conclude that airborne drone data has major potential to be embedded in operational monitoring programmes and can form useful links between satellite and in situ observations

    Who Commits to the Rule of Law? Constrained Government and Foreign Direct Investment in Postcommunist States

    Get PDF
    Research linking credible commitments to the rule of law in terms of property rights and contract enforcement is a hallmark of recent efforts to explain economic growth and development. However, many postcommunist states have had difficulty making such commitments and spurring growth. Many argue political polarization prevents states from reforming laws and protecting property rights in some countries whereas single-party governance renders state promises incredible in others. I analyze pooled cross-sectional time-series data for twenty-four postcommunist countries and provide evidence effective constraints among elected officials act as democratic commitment mechanisms rendering government policies credible
    corecore