916 research outputs found

    Connectivity percolation in suspensions of hard platelets

    Get PDF
    We present a study on connectivity percolation in suspensions of hard platelets by means of Monte Carlo simulation. We interpret our results using a contact-volume argument based on an effective single--particle cell model. It is commonly assumed that the percolation threshold of anisotropic objects scales as their inverse aspect ratio. While this rule has been shown to hold for rod-like particles, we find that for hard plate-like particles the percolation threshold is non-monotonic in the aspect ratio. It exhibits a shallow minimum at intermediate aspect ratios and then saturates to a constant value. This effect is caused by the isotropic-nematic transition pre-empting the percolation transition. Hence the common strategy to use highly anisotropic, conductive particles as fillers in composite materials in order to produce conduction at low filler concentration is expected to fail for plate-like fillers such as graphene and graphite nanoplatelets

    The relationship between motor competence and health-related fitness in children and adolescents

    Get PDF
    Background and aims : In the last twenty years, there has been increasing evidence that Motor Competence (MC) is vital for developing an active and healthy lifestyle. This study analyses the associations between motor competence and its components, with health-related fitness (HRF). Methods : A random sample of 546 children (278 males, mean = 10.77 years) divided into four age groups (7-8; 9-10; 11-12; 13-14 years old) was evaluated. A quantitative MC instrument (evaluating stability, locomotor and manipulative skills), a maximal multistage 20-m shuttle-run test and the handgrip test, height and BMI were used in the analyses. Pearson correlations and standard regression modelling were performed to explore the associations between variables. Results : Moderate to strong significant correlations (0.49 < r < 0.73) were found between MC and HRF, for both sexes, and correlation values were stable across the age groups. The MC model explained 74% of the HRF variance, with the locomotor component being the highest predictor for the entire sample (beta =.302; p < .001). Gender-related differences were found when boys and girls were analysed at each age group. Locomotor MC for girls was the most consistent significant predictor of HRF across all age groups (0.47 < beta < 0.65; all p <=.001). For boys, significant predictors were locomotor and manipulative MC (0.21 <beta< 0.49; all p < .05) in the two younger age groups (7-8 and 9-10 years) and stability (0.50 <beta< 0.54; all p <=.001) for the older two age groups (11-12 and 13-14 years). Conclusion : These results support the idea that: (1) the relationship between overall MC and HRF is strong and stable across childhood and early adolescence; (2) when accounting for the different MC components, boys and girls show different relationship patterns with HFR across age

    Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Local adaptation of a species can affect community composition, yet the importance of local adaptation compared with species presence per se is unknown. Here we determine how a compost bacterial community exposed to elevated temperature changes over 2 months as a result of the presence of a focal bacterium, Pseudomonas fluorescens SBW25, that had been pre-adapted or not to the compost for 48 days. The effect of local adaptation on community composition is as great as the effect of species presence per se, with these results robust to the presence of an additional strong selection pressure: an SBW25-specific virus. These findings suggest that evolution occurring over ecological time scales can be a key driver of the structure of natural microbial communities, particularly in situations where some species have an evolutionary head start following large perturbations, such as exposure to antibiotics or crop planting and harvesting.The work was funded by BBSRC, AXA Research fund and NERC. P.G. was supported by a Marie Curie Intra-European Fellowship within the European Commission 7th Framework Program (PIEF-GA-2010-272945), and acknowledges the Spanish MINECO support (AGL2014-59556-R). A.B. was supported by the Royal Society (UK). L.D.M. acknowledges the KU Leuven Research Fund support PF/2010/07

    Chytrid epidemics may increase genetic diversity of a diatom spring-bloom

    Get PDF
    Contrary to expectation, populations of clonal organisms are often genetically highly diverse. In phytoplankton, this diversity is maintained throughout periods of high population growth (that is, blooms), even though competitive exclusion among genotypes should hypothetically lead to the dominance of a few superior genotypes. Genotype-specific parasitism may be one mechanism that helps maintain such high-genotypic diversity of clonal organisms. Here, we present a comparison of population genetic similarity by estimating the beta-dispersion among genotypes of early and peak bloom populations of the diatom Asterionella formosa for three spring-blooms under high or low parasite pressure. The Asterionella population showed greater beta-dispersion at peak bloom than early bloom in the 2 years with high parasite pressure, whereas the within group dispersion did not change under low parasite pressure. Our findings support that high prevalence parasitism can promote genetic diversification of natural populations of clonal hosts

    Strong differences in the clonal variation of two Daphnia species from mountain lakes affected by overwintering strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The population structure of cyclical parthenogens such as water fleas is strongly influenced by the frequency of alternations between sexual and asexual (parthenogenetic) reproduction, which may differ among populations and species. We studied genetic variation within six populations of two closely related species of water fleas of the genus <it>Daphnia </it>(Crustacea, Cladocera). <it>D. galeata </it>and <it>D. longispina </it>both occur in lakes in the Tatra Mountains (Central Europe), but their populations show distinct life history strategies in that region. In three studied lakes inhabited by <it>D. galeata</it>, daphnids overwinter under the ice as adult females. In contrast, in lakes inhabited by <it>D. longispina</it>, populations apparently disappear from the water column and overwinter as dormant eggs in lake sediments. We investigated to what extent these different strategies lead to differences in the clonal composition of late summer populations.</p> <p>Results</p> <p>Analysis of genetic variation at nine microsatellite loci revealed that clonal richness (expressed as the proportion of different multilocus genotypes, MLGs, in the whole analysed sample) consistently differed between the two studied species. In the three <it>D. longispina </it>populations, very high clonal richness was found (MLG/N ranging from 0.97 to 1.00), whereas in <it>D. galeata </it>it was much lower (0.05 to 0.50). The dominant MLGs in all <it>D. galeata </it>populations were heterozygous at five or more loci, suggesting that such individuals all represented the same clonal lineages rather than insufficiently resolved groups of different clones.</p> <p>Conclusions</p> <p>The low clonal diversities and significant deviations from Hardy-Weinberg equilibrium in <it>D. galeata </it>populations were likely a consequence of strong clonal erosion over extended periods of time (several years or even decades) and the limited influence of sexual reproduction. Our data reveal that populations of closely related <it>Daphnia </it>species living in relatively similar habitats (permanent, oligotrophic mountain lakes) within the same region may show strikingly different genetic structures, which most likely depend on their reproductive strategy during unfavourable periods. We assume that similar impacts of life history on population structures are also relevant for other cyclical parthenogen groups. In extreme cases, prolonged clonal erosion may result in the dominance of a single clone within a population, which might limit its microevolutionary potential if selection pressures suddenly change.</p

    Operational Framework to Quantify “Quality of Recycling” across Different Material Types

    Get PDF
    Many pledges and laws are setting recycling targets without clearly defining quality of recycling. Striving to close this gap, this study presents an operational framework to quantify quality of recycling. The framework comprises three dimensions: the Virgin Displacement Potential (VDP); In-Use Stocks Lifetime (IUSL); and Environmental Impact (EI). The VDP indicates to what extent a secondary material can be used as a substitute for virgin material; the IUSL indicates how much of a certain material is still functional in society over a given time frame, and the EI is a measure of the environmental impact of a recycling process. The three dimensions are aggregated by plotting them in a distance-to-target graph. Two example calculations are included on poly(ethylene terephthalate) (PET) and glass. The results indicate that the recycling of bottle and container glass collected via a deposit-refund system has the lowest distance-to-target, at 1.05, and, thus, the highest quality of recycling. For PET bottles, the highest quality of recycling is achieved in closed-loop mechanical recycling of bottles (distance to optimal quality of 0.96). Furthermore, sensitivity analysis indicates that certain parameters, e.g., the collection rate for PET bottles, can reduce the distance-to-target to 0.75 when all bottles are collected for recycling

    Lack of phylogeographic structure in the freshwater cyanobacterium <i>Microcystis aeruginosa</i> suggests global dispersal

    Get PDF
    Background: Free-living microorganisms have long been assumed to have ubiquitous distributions with little biogeographic signature because they typically exhibit high dispersal potential and large population sizes. However, molecular data provide contrasting results and it is far from clear to what extent dispersal limitation determines geographicstructuring of microbial populations. We aimed to determine biogeographical patterns of the bloom-forming freshwatercyanobacterium Microcystis aeruginosa. Being widely distributed on a global scale but patchily on a regional scale, this prokaryote is an ideal model organism to study microbial dispersal and biogeography.Methodology/Principal Findings: The phylogeography of M. aeruginosa was studied based on a dataset of 311 rDNAinternal transcribed spacer (ITS) sequences sampled from six continents. Richness of ITS sequences was high (239 ITS typeswere detected). Genetic divergence among ITS types averaged 4% (maximum pairwise divergence was 13%). Preliminary analyses revealed nearly completely unresolved phylogenetic relationships and a lack of genetic structure among all sequences due to extensive homoplasy at multiple hypervariable sites. After correcting for this, still no clear phylogeographic structure was detected, and no pattern of isolation by distance was found on a global scale. Concomitantly, genetic differentiation among continents was marginal, whereas variation within continents was high and was mostly shared with all other continents. Similarly, no genetic structure across climate zones was detected.Conclusions/Significance: The high overall diversity and wide global distribution of common ITS types in combination with the lack of phylogeographic structure suggest that intercontinental dispersal of M. aeruginosa ITS types is not rare, and that this species might have a truly cosmopolitan distribution
    corecore