144 research outputs found

    The imprint of stratospheric transport on column-averaged methane

    Get PDF
    Model simulations of column-averaged methane mixing ratios (XCH4) are extensively used for inverse estimates of methane (CH4) emissions from atmospheric measurements. Our study shows that virtually all chemical transport models (CTM) used for this purpose are affected by stratospheric model-transport errors. We quantify the impact of such model transport errors on the simulation of stratospheric CH4 concentrations via an a posteriori correction method. This approach compares measurements of the mean age of air with modeled age and expresses the difference in terms of a correction to modeled stratospheric CH4 mixing ratios. We find age differences up to ~ 3 years yield to a bias in simulated CH4 of up to 250 parts per billion (ppb). Comparisons between model simulations and ground-based XCH4 observations from the Total Carbon Column Network (TCCON) reveal that stratospheric model-transport errors cause biases in XCH4 of ~ 20 ppb in the midlatitudes and ~ 27 ppb in the arctic region. Improved overall as well as seasonal model-observation agreement in XCH4 suggests that the proposed, age-of-air-based stratospheric correction is reasonable. The latitudinal model bias in XCH4 is supposed to reduce the accuracy of inverse estimates using satellite-derived XCH4 data. Therefore, we provide an estimate of the impact of stratospheric model-transport errors in terms of CH4 flux errors. Using a one-box approximation, we show that average model errors in stratospheric transport correspond to an overestimation of CH4 emissions by ~ 40 % (~ 7 Tg yr−1) for the arctic, ~ 5 % (~ 7 Tg yr−1) for the northern, and ~ 60 % (~ 7 Tg yr−1) for the southern hemispheric mid-latitude region. We conclude that an improved modeling of stratospheric transport is highly desirable for the joint use with atmospheric XCH4 observations in atmospheric inversions

    Carbon monoxide (CO) and ethane (C₂H₆) trends from ground-based solar FTIR measurements at six European stations, comparison and sensitivity analysis with the EMEP model

    Get PDF
    Trends in the CO and C2H6 partial columns (~0–15 km) have been estimated from four European groundbasedsolar FTIR (Fourier Transform InfraRed) stations for the 1996–2006 time period. The CO trends from the four stations Jungfraujoch, Zugspitze, Harestua and Kiruna have been estimated to −0.45±0.16%yr−1, −1.00 ± 0.24%yr−1, −0.62±0.19%yr−1 and −0.61±0.16%yr−1, respectively. The corresponding trends for C2H6 are−1.51±0.23%yr−1, −2.11±0.30%yr−1, −1.09±0.25%yr−1 and −1.14±0.18%yr−1. All trends are presented with their 2-σ confidence intervals. To find possible reasons for the CO trends, the global-scale EMEP MSC-W chemical transport model has been used in a series of sensitivity scenarios. It is shown that the trends are consistent with the combination of a 20% decrease in the anthropogenic CO emissions seen in Europe and North America during the 1996–2006 period and a 20% increase in the anthropogenic CO emissions in East Asia, during the same time period. The possible impacts of CH4 and biogenic volatile organic compounds (BVOCs) are also considered. The European and global-scale EMEP models have been evaluated against the measured CO and C2H6 partial columns from Jungfraujoch, Zugspitze, Bremen, Harestua, Kiruna and Ny-Ålesund. The European model reproduces, on average the measurements at the different sites fairly well and within 10–22% deviation for CO and 14–31% deviation for C2H6. Their seasonal amplitude is captured within 6–35% and 9–124% for CO and C2H6, respectively. However, 61–98% of the CO and C2H6 partial columns in the European model are shown to arise from the boundary conditions, making the globalscale model a more suitable alternative when modeling these two species. In the evaluation of the global model the average partial columns for 2006 are shown to be within 1–9% and 37–50% of the measurements for CO and C2H6, respectively. The global model sensitivity for assumptions made in this paper is also analyzed

    The Orbiting Carbon Observatory (OCO-2) Tracks 2-3 Peta-Gram Increase in Carbon Release to the Atmosphere During the 2014-2016 El Nino

    Get PDF
    The powerful El Nio event of 2015-2016 - the third most intense since the 1950s - has exerted a large impact on the Earth's natural climate system. The column-averaged CO2 dry-air mole fraction (XCO2) observations from satellites and ground based networks are analyzed together with in situ observations for the period of September 2014 to October 2016. From the differences between satellite (OCO-2) observations and simulations using an atmospheric chemistry-transport model, we estimate that, relative to the mean annual fluxes for 2014, the most recent El Nio has contributed to an excess CO2 emission from the Earth's surface (land+ocean) to the atmosphere in the range of 2.4+/-0.2 PgC (1 Pg = 10(exp 15) g) over the period of July 2015 to June 2016. The excess CO2 flux is resulted primarily from reduction in vegetation uptake due to drought, and to a lesser degree from increased biomass burning. It is about the half of the CO2 flux anomaly (range: 4.4-6.7 PgC) estimated for the 1997/1998 El Nio. The annual total sink is estimated to be 3.9+/-0.2 PgC for the assumed fossil fuel emission of 10.1 PgC. The major uncertainty in attribution arise from error in anthropogenic emission trends, satellite data and atmospheric transport

    The imprint of stratospheric transport on column-averaged methane

    Get PDF
    Model simulations of column-averaged methane mixing ratios (XCH4) are extensively used for inverse estimates of methane (CH4) emissions from atmospheric measurements. Our study shows that virtually all chemical transport models (CTM) used for this purpose are affected by stratospheric model-transport errors. We quantify the impact of such model transport errors on the simulation of stratospheric CH4 concentrations via an a posteriori correction method. This approach compares measurements of the mean age of air with modeled age and expresses the difference in terms of a correction to modeled stratospheric CH4 mixing ratios. We find age differences up to ~ 3 years yield to a bias in simulated CH4 of up to 250 parts per billion (ppb). Comparisons between model simulations and ground-based XCH4 observations from the Total Carbon Column Network (TCCON) reveal that stratospheric model-transport errors cause biases in XCH4 of ~ 20 ppb in the midlatitudes and ~ 27 ppb in the arctic region. Improved overall as well as seasonal model-observation agreement in XCH4 suggests that the proposed, age-of-air-based stratospheric correction is reasonable. The latitudinal model bias in XCH4 is supposed to reduce the accuracy of inverse estimates using satellite-derived XCH4 data. Therefore, we provide an estimate of the impact of stratospheric model-transport errors in terms of CH4 flux errors. Using a one-box approximation, we show that average model errors in stratospheric transport correspond to an overestimation of CH4 emissions by ~ 40 % (~ 7 Tg yr?1) for the arctic, ~ 5 % (~ 7 Tg yr?1) for the northern, and ~ 60 % (~ 7 Tg yr?1) for the southern hemispheric mid-latitude region. We conclude that an improved modeling of stratospheric transport is highly desirable for the joint use with atmospheric XCH4 observations in atmospheric inversions.Discussion Pape
    • 

    corecore