5,359 research outputs found
Recommended from our members
A randomised controlled trial of cognitive behavioural treatment for obsessive compulsive disorder in children and adolescents
Cognitive behaviour therapy (CBT) for young people with obsessive compulsive disorder (OCD) has become the treatment of first choice. However, the literature is largely based on studies emphasising exposure and response prevention. In this study, we report on a randomised controlled trial of CBT for young people carried out in typical outpatient clinic conditions which focused on cognitions. A randomised controlled trial compares 10 sessions of manualised cognitive behavioural treatment with a 12-week waiting list for adolescents and children with OCD. Assessors were blind to treatment allocation. 21 consecutive patients with OCD aged between 9 and 18 years were recruited. The group who received treatment improved more than a comparison group who waited for 3 months. The second group was treated subsequently using the same protocol and made similar gains. In conclusion, CBT can be delivered effectively to young people with OCD in typical outpatient settings
Dynamics of supercooled liquids: density fluctuations and Mode Coupling Theory
We write equations of motion for density variables that are equivalent to
Newtons equations. We then propose a set of trial equations parameterised by
two unknown functions to describe the exact equations. These are chosen to best
fit the exact Newtonian equations. Following established ideas, we choose to
separate these trial functions into a set representing integrable motions of
density waves, and a set containing all effects of non-integrability. It
transpires that the static structure factor is fixed by this minimum condition
to be the solution of the Yvon-Born-Green (YBG) equation. The residual
interactions between density waves are explicitly isolated in their Newtonian
representation and expanded by choosing the dominant objects in the phase space
of the system, that can be represented by a dissipative term with memory and a
random noise. This provides a mapping between deterministic and stochastic
dynamics. Imposing the Fluctuation-Dissipation Theorem (FDT) allows us to
calculate the memory kernel. We write exactly the expression for it, following
two different routes, i.e. using explicitly Newtons equations, or instead,
their implicit form, that must be projected onto density pairs, as in the
development of the well-established Mode Coupling Theory (MCT). We compare
these two ways of proceeding, showing the necessity to enforce a new equation
of constraint for the two schemes to be consistent. Thus, while in the first
`Newtonian' representation a simple gaussian approximation for the random
process leads easily to the Mean Spherical Approximation (MSA) for the statics
and to MCT for the dynamics of the system, in the second case higher levels of
approximation are required to have a fully consistent theory
Random Walks Along the Streets and Canals in Compact Cities: Spectral analysis, Dynamical Modularity, Information, and Statistical Mechanics
Different models of random walks on the dual graphs of compact urban
structures are considered. Analysis of access times between streets helps to
detect the city modularity. The statistical mechanics approach to the ensembles
of lazy random walkers is developed. The complexity of city modularity can be
measured by an information-like parameter which plays the role of an individual
fingerprint of {\it Genius loci}.
Global structural properties of a city can be characterized by the
thermodynamical parameters calculated in the random walks problem.Comment: 44 pages, 22 figures, 2 table
Semiclassical theory for spatial density oscillations in fermionic systems
We investigate the particle and kinetic-energy densities for a system of
fermions bound in a local (mean-field) potential V(\bfr). We generalize a
recently developed semiclassical theory [J. Roccia and M. Brack, Phys. Rev.\
Lett. {\bf 100}, 200408 (2008)], in which the densities are calculated in terms
of the closed orbits of the corresponding classical system, to
dimensions. We regularize the semiclassical results for the U(1) symmetry
breaking occurring for spherical systems at and near the classical
turning points where the Friedel oscillations are predominant and well
reproduced by the shortest orbit going from to the closest turning point
and back. For systems with spherical symmetry, we show that there exist two
types of oscillations which can be attributed to radial and non-radial orbits,
respectively. The semiclassical theory is tested against exact
quantum-mechanical calculations for a variety of model potentials. We find a
very good overall numerical agreement between semiclassical and exact numerical
densities even for moderate particle numbers . Using a "local virial
theorem", shown to be valid (except for a small region around the classical
turning points) for arbitrary local potentials, we can prove that the
Thomas-Fermi functional reproduces the oscillations in
the quantum-mechanical densities to first order in the oscillating parts.Comment: LaTeX, 22pp, 15 figs, 1 table, to be published in Phys. Rev.
Microscopic dynamics in liquid metals: the experimental point of view
The experimental results relevant for the understanding of the microscopic
dynamics in liquid metals are reviewed, with special regards to the ones
achieved in the last two decades. Inelastic Neutron Scattering played a major
role since the development of neutron facilities in the sixties. The last ten
years, however, saw the development of third generation radiation sources,
which opened the possibility of performing Inelastic Scattering with X rays,
thus disclosing previously unaccessible energy-momentum regions. The purely
coherent response of X rays, moreover, combined with the mixed
coherent/incoherent response typical of neutron scattering, provides enormous
potentialities to disentangle aspects related to the collectivity of motion
from the single particle dynamics.
If the last twenty years saw major experimental developments, on the
theoretical side fresh ideas came up to the side of the most traditional and
established theories. Beside the raw experimental results, therefore, we review
models and theoretical approaches for the description of microscopic dynamics
over different length-scales, from the hydrodynamic region down to the single
particle regime, walking the perilous and sometimes uncharted path of the
generalized hydrodynamics extension. Approaches peculiar of conductive systems,
based on the ionic plasma theory, are also considered, as well as kinetic and
mode coupling theory applied to hard sphere systems, which turn out to mimic
with remarkable detail the atomic dynamics of liquid metals. Finally, cutting
edges issues and open problems, such as the ultimate origin of the anomalous
acoustic dispersion or the relevance of transport properties of a conductive
systems in ruling the ionic dynamic structure factor are discussed.Comment: 53 pages, 41 figures, to appear in "The Review of Modern Physics".
Tentatively scheduled for July issu
Determining âAge at Deathâ for Forensic Purposes using Human Bone by a Laboratory-based Analytical Method
Determination of age-at-death (AAD) is an important and frequent requirement in contemporary forensic science and in the reconstruction of past populations and societies from their remains. Its estimation is relatively straightforward and accurate (±3 years) for immature skeletons by using morphological features and reference tables within the context of forensic anthropology. However, after skeletal maturity (>35 yrs) estimates become inaccurate, particularly in the legal context. In line with the general migration of all the forensic sciences from reliance upon empirical criteria to those which are more evidence-based, AAD determination should rely more-and-more upon more quantitative methods. We explore here whether well-known changes in the biomechanical properties of bone and the properties of bone matrix, which have been seen to change with age even after skeletal maturity in a traceable manner, can be used to provide a reliable estimate of AAD. This method charts a combination of physical characteristics some of which are measured at a macroscopic level (wet & dry apparent density, porosity, organic/mineral/water fractions, collagen thermal degradation properties, ash content) and others at the microscopic level (Ca/P ratios, osteonal and matrix microhardness, image analysis of sections). This method produced successful age estimates on a cohort of 12 donors of age 53â85 yr (7 male, 5 female), where the age of the individual could be approximated within less than ±1 yr. This represents a vastly improved level of accuracy than currently extant age estimation techniques. It also presents: (1) a greater level of reliability and objectivity as the results are not dependent on the experience and expertise of the observer, as is so often the case in forensic skeletal age estimation methods; (2) it is purely laboratory-based analytical technique which can be carried out by someone with technical skills and not the specialised forensic anthropology experience; (3) it can be applied worldwide following stringent laboratory protocols. As such, this technique contributes significantly to improving age estimation and therefore identification methods for forensic and other purposes
A framework for deriving semantic web services
Web service-based development represents an emerging approach for the development of distributed information systems. Web services have been mainly applied by software practitioners as a means to modularize system functionality that can be offered across a network (e.g., intranet and/or the Internet). Although web services have been
predominantly developed as a technical solution for integrating software systems, there is a more business-oriented aspect that developers and enterprises need to deal with in order to benefit from the full potential of web services in an electronic market. This âignoredâ aspect is the representation of the semantics underlying the services themselves as well as the âthingsâ that the services manage. Currently languages like the Web Services Description Language (WSDL) provide the syntactic means to describe web services, but
lack in providing a semantic underpinning. In order to harvest all the benefits of web services technology, a framework has been developed for deriving business semantics from syntactic descriptions of web services. The benefits of such a framework are two-fold. Firstly, the framework provides a way to gradually construct domain ontologies from previously defined technical services. Secondly, the framework enables the
migration of syntactically defined web services toward semantic web services. The study follows a design research approach which (1) identifies the problem area and its relevance from an industrial case study and previous research, (2) develops the
framework as a design artifact and (3) evaluates the application of the framework through a relevant scenario
Casimir energy of massive MIT fermions in a Bohm-Aharonov background
We study the effect of a background flux string on the vacuum energy of
massive Dirac fermions in 2+1 dimensions confined to a finite spatial region
through MIT boundary conditions. We treat two admissible self-adjoint
extensions of the Hamiltonian and compare the results. In particular, for one
of these extensions, the Casimir energy turns out to be discontinuous at
integer values of the flux.Comment: 16 pages, 3 figure
Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks
It is argued that experimental constraints on theories of asymmetric dark
matter (ADM) almost certainly require that the DM be part of a richer hidden
sector of interacting states of comparable mass or lighter. A general requisite
of models of ADM is that the vast majority of the symmetric component of the DM
number density must be removed in order to explain the observed relationship
via the DM asymmetry. Demanding the efficient
annihilation of the symmetric component leads to a tension with experimental
limits if the annihilation is directly to Standard Model (SM) degrees of
freedom. A comprehensive effective operator analysis of the model independent
constraints on ADM from direct detection experiments and LHC monojet searches
is presented. Notably, the limits obtained essentially exclude models of ADM
with mass 1GeV 100GeV annihilating to SM quarks via
heavy mediator states. This motivates the study of portal interactions between
the dark and SM sectors mediated by light states. Resonances and threshold
effects involving the new light states are shown to be important for
determining the exclusion limits.Comment: 18+6 pages, 18 figures. v2: version accepted for publicatio
- âŠ