10,741 research outputs found

    Diversity of Rainfall Thresholds for early warning of hydro-geological disasters

    Get PDF
    For early warning of disasters induced by precipitation (such as floods and landslides), different kinds of rainfall thresholds are adopted, which vary from each other, on the basis on adopted hypotheses. In some cases, they represent the occurrence probability of an event (landslide or flood), in other cases the exceedance probability of a critical value for an assigned indicator I (a function of rainfall heights), and in further cases they only indicate the exceeding of a prefixed percentage a critical value for I, indicated as Icr. For each scheme, it is usual to define three different criticality levels (ordinary, moderate and severe), which are associated to warning levels, according to emergency plans. This work briefly discusses different schemes of rainfall thresholds, focusing attention on landslide prediction, with some applications to a real case study in Calabria region (southern Italy)

    A space-time generator for rainfall nowcasting: the PRAISEST model

    No full text
    International audienceThe paper introduces a new stochastic technique for forecasting rainfall in space-time domain: the PRAISEST Model (Prediction of Rainfall Amount Inside Storm Events: Space and Time). The model is based on the assumption that the rainfall height H accumulated on an interval ?t between the instants i?t and (i+1)?t and on a spatial cell of size ?x?y is correlated either with a variable Z, representing antecedent precipitation at the same point, either with a variable W, representing simultaneous rainfall at neighbour cells. The mathematical background is given by a joined probability density fH,W,Z (h,w,z) in which the variables have a mixed nature, that is a finite probability for null value and infinitesimal probabilities for the positive values. As study area, the Calabria region, in Southern Italy, has been selected. The region has been discretised by 10 km×10 km cell grid, according to the raingauge network density in this area. Storm events belonging to 1990?2004 period were analyzed to test performances of the PRAISEST model

    The Chrono-geometrical Structure of Special and General Relativity: a Re-Visitation of Canonical Geometrodynamics

    Get PDF
    A modern re-visitation of the consequences of the lack of an intrinsic notion of instantaneous 3-space in relativistic theories leads to a reformulation of their kinematical basis emphasizing the role of non-inertial frames centered on an arbitrary accelerated observer. In special relativity the exigence of predictability implies the adoption of the 3+1 point of view, which leads to a well posed initial value problem for field equations in a framework where the change of the convention of synchronization of distant clocks is realized by means of a gauge transformation. This point of view is also at the heart of the canonical approach to metric and tetrad gravity in globally hyperbolic asymptotically flat space-times, where the use of Shanmugadhasan canonical transformations allows the separation of the physical degrees of freedom of the gravitational field (the tidal effects) from the arbitrary gauge variables. Since a global vision of the equivalence principle implies that only global non-inertial frames can exist in general relativity, the gauge variables are naturally interpreted as generalized relativistic inertial effects, which have to be fixed to get a deterministic evolution in a given non-inertial frame. As a consequence, in each Einstein's space-time in this class the whole chrono-geometrical structure, including also the clock synchronization convention, is dynamically determined and a new approach to the Hole Argument leads to the conclusion that "gravitational field" and "space-time" are two faces of the same entity. This view allows to get a classical scenario for the unification of the four interactions in a scheme suited to the description of the solar system or our galaxy with a deperametrization to special relativity and the subsequent possibility to take the non-relativistic limit.Comment: 33 pages, Lectures given at the 42nd Karpacz Winter School of Theoretical Physics, "Current Mathematical Topics in Gravitation and Cosmology", Ladek, Poland, 6-11 February 200

    Rainfall nowcasting by at site stochastic model P.R.A.I.S.E.

    Get PDF
    The paper introduces a stochastic model to forecast rainfall heights at site: the P.R.A.I.S.E. model (Prediction of Rainfall Amount Inside Storm Events). PRAISE is based on the assumption that the rainfall height <I>H<sub>i</I>+1</sub> accumulated on an interval &Delta;<I>t</I> between the instants <I>i&Delta;t</I> and <I>(i+1&Delta;t</I> is correlated with a variable <I>Z<sub>i<sup>(&nu;)</sup></sub></I>, representing antecedent precipitation. The mathematical background is given by a joined probability density <I>f<sub>H<sub>i+1</sub></sub>, Z<sub>i</sub><sup>(&nu;)</sup>(h<sub>i+1</sub> ,z<sub>i</sub><sup>(&nu;)</sup></I>) in which the variables have a mixed nature, that is a finite probability in correspondence to the null value and infinitesimal probabilities in correspondence to the positive values. As study area, the Calabria region, in Southern Italy, was selected, to test performances of the PRAISE model

    Occurrence analysis of daily rainfalls through non-homogeneous Poissonian processes

    Get PDF
    Abstract. A stochastic model based on a non-homogeneous Poisson process, characterised by a time-dependent intensity of rainfall occurrence, is employed to explain seasonal effects of daily rainfalls exceeding prefixed threshold values. The data modelling has been performed with a partition of observed daily rainfall data into a calibration period for parameter estimation and a validation period for checking on occurrence process changes. The model has been applied to a set of rain gauges located in different geographical areas of Southern Italy. The results show a good fit for time-varying intensity of rainfall occurrence process by 2-harmonic Fourier law and no statistically significant evidence of changes in the validation period for different threshold values

    Discovery of periodic dips in the brightest hard X-ray source of M31 with EXTraS

    Get PDF
    We performed a search for eclipsing and dipping sources in the archive of the EXTraS project - a systematic characterization of the temporal behaviour of XMM-Newton point sources. We discovered dips in the X-ray light curve of 3XMM J004232.1+411314, which has been recently associated with the hard X-ray source dominating the emission of M31. A systematic analysis of XMM-Newton observations revealed 13 dips in 40 observations (total exposure time \sim0.8 Ms). Among them, four observations show two dips, separated by \sim4.01 hr. Dip depths and durations are variable. The dips occur only during low-luminosity states (L0.212<1×1038_{0.2-12}<1\times10^{38} erg s1^{-1}), while the source reaches L0.2122.8×1038_{0.2-12}\sim2.8\times10^{38} erg s1^{-1}. We propose this system to be a new dipping Low-Mass X-ray Binary in M31 seen at high inclination (60^{\circ}-80^{\circ}), the observed dipping periodicity is the orbital period of the system. A blue HST source within the Chandra error circle is the most likely optical counterpart of the accretion disk. The high luminosity of the system makes it the most luminous dipper known to date.Comment: 11 pages, 2 figures, 5 tables, accepted for publication in ApJ

    Supergiant Fast X-ray Transients uncovered by the EXTraS project: flares reveal the development of magnetospheric instability in accreting neutron stars

    Get PDF
    The low luminosity, X-ray flaring activity, of the sub-class of high mass X-ray binaries called Supergiant Fast X-ray Transients, has been investigated using XMM-Newton public observations, taking advantage of the products made publicly available by the EXTraS project. One of the goals of EXTraS was to extract from the XMM-Newton public archive information on the aperiodic variability of all sources observed in the soft X-ray range with EPIC (0.2-12 keV). Adopting a Bayesian block decomposition of the X-ray light curves of a sample of SFXTs, we picked out 144 X-ray flares, covering a large range of soft X-ray luminosities (1e32-1e36 erg/s). We measured temporal quantities, like the rise time to and the decay time from the peak of the flares, their duration and the time interval between adjacent flares. We also estimated the peak luminosity, average accretion rate and energy release in the flares. The observed soft X-ray properties of low-luminosity flaring activity from SFXTs is in qualitative agreement with what is expected by the application of the Rayleigh-Taylor instability model in accreting plasma near the neutron star magnetosphere. In the case of rapidly rotating neutron stars, sporadic accretion from temporary discs cannot be excluded.Comment: Accepted for publication in MNRAS (accepted 2019 May 1; received 2019 April 30; in original form 2019 February 25). 22 pages, 16 figures, 3 tables

    Prevalence and pharmacologic management of familial hypercholesterolemia in an unselected contemporary cohort of patients with stable coronary artery disease

    Get PDF
    INTRODUCTION: Familial hypercholesterolemia (FH) is an inherited disorder characterized by elevated plasma levels of low-density lipoprotein cholesterol (LDL-C) associated with premature cardiovascular disease. METHODS: Using the data from the START (STable Coronary Artery Diseases RegisTry) study, a nationwide, prospective survey on patients with stable coronary artery disease (CAD), we described prevalence and lipid lowering strategies commonly employed in these patients. The study population was divided into "definite/probable FH," defined as a Dutch Lipid Clinic Network (DLCN) score ≥6, "possible FH" with DLCN 3-5, and "unlikely FH" in presence of a DLCN <3. RESULTS: Among the 4030 patients with the DLCN score available, 132 (3.3%) were classified as FH (2.3% with definite/probable and 1.0% with possible FH) and 3898 (96.7%) had unlikely FH. Patients with both definite/probable and possible FH were younger compared to patients not presenting FH. Mean on-treatment LDL-C levels were 107.8 ± 41.5, 84.4 ± 40.9, and 85.8 ± 32.3 (P < 0.0001) and a target of ≤70 mg/dL was reached in 10.9%, 30.0%, and 22.0% (P < 0.0001) of patents with definite/probable, possible FH, and unlikely FH, respectively. Statin therapy was prescribed in 85 (92.4%) patients with definite/probable FH, in 38 (95.0%) with possible FH, and in 3621 (92.9%) with unlikely FH (P = 0.86). The association of statin and ezetimibe, in absence of other lipid-lowering therapy, was more frequently used in patients with definite/probable FH compared to patients without FH (31.5% vs 17.5% vs 9.5%; P < 0.0001). CONCLUSIONS: In this large cohort of consecutive patients with stable CAD, FH was highly prevalent and generally undertreated with lipid lowering therapies

    Geophysical methods to support correct water sampling locations for salt dilution gauging

    Get PDF
    To improve water management design, particularly in irrigation areas, it is important to evaluate the baseline state of the water resources, including canal discharge. Salt dilution gauging is a traditional and well-documented technique in this respect. The complete mixing of salt used for dilution gauging is required; this condition is difficult to test or verify and, if not fulfilled, is the largest source of uncertainty in the discharge calculation. In this paper, a geophysical technique (FERT, fast electrical resistivity tomography) is proposed for imaging the distribution of the salt plume used for dilution gauging at every point along a sampling cross section. With this imaging, complete mixing can be verified. If the mixing is not complete, the image created by FERT can also provide a possible guidance for selecting water-sampling locations in the sampling cross section. A water multi-sampling system prototype aimed to potentially take into account concentration variability is also proposed and tested. The results reported in the paper show that FERT provides a three-dimensional image of the dissolved salt plume and that this can potentially help in the selection of water sampling points
    corecore