
Hydrol. Earth Syst. Sci., 11, 1341–1351, 2007
www.hydrol-earth-syst-sci.net/11/1341/2007/
© Author(s) 2007. This work is licensed
under a Creative Commons License.

Hydrology and
Earth System

Sciences

Rainfall nowcasting by at site stochastic model P.R.A.I.S.E.

B. Sirangelo, P. Versace, and D. L. De Luca

Dipartimento di Difesa del Suolo, Università della Calabria – Rende, Italy
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Abstract. The paper introduces a stochastic model to fore-
cast rainfall heights at site: the P.R.A.I.S.E. model (Predic-
tion of Rainfall Amount Inside Storm Events). PRAISE is
based on the assumption that the rainfall heightHi+1 ac-
cumulated on an interval1t between the instantsi1t and
(i+1)1t is correlated with a variableZ(ν)

i , representing
antecedent precipitation. The mathematical background is

given by a joined probability densityf
Hi+1,Z

(ν)
i

(
hi+1, z

(ν)
i

)
in which the variables have a mixed nature, that is a finite
probability in correspondence to the null value and infinites-
imal probabilities in correspondence to the positive values.
As study area, the Calabria region, in Southern Italy, was se-
lected, to test performances of the PRAISE model.

1 Introduction

Rainfall is the main input for all hydrological models such
as, for example, rainfall-runoff models and for forecasting
landslides induced by precipitation. In the last few years
catastrophic rainfall events have occurred in the Mediter-
ranean area, leading to floods, flash floods and shallow land-
slides (debris and mud flows). Consequently there is the
need for the implementation of forecasting systems able to
predict meteorological conditions leading to disastrous oc-
currences. Nowadays, for achieving this goal, meteorolog-
ical and stochastic models are used. The former (Chuang
et al., 2000; Palmer et al., 2000; Untch et al., 2006) can
be viewed as valid qualitative-quantitative rainfall forecast-
ing tools at 24, 48 and 72 h (of course, at these forecasting
horizons an absolute precision is not required, but rather an
order of magnitude) when these phenomena occur on a con-
siderable spatial scale. Nevertheless, they cannot yet be re-
garded as providers of quantitative rainfall forecasts in the
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short term (6–12 h) to be used directly for forecasting sys-
tems, since the quantitative forecasting of precipitation, on
the time and space scales of the hydrological phenomena, has
not yet achieved the degree of precision necessary to avoid
either the non-forecasting of exceptional small-scale situa-
tions or the issuing of unwarranted alarms. Consequently,
in order to perform short term real-time rainfall forecasts for
small basins (i.e. with size ranging 100–1000 km2), tempo-
ral stochastic models appear more competitive. Stochastic
processes are widely used in hydrological variables forecast-
ing (Waymire and Gupta, 1981; Georgakakos and Kavvas,
1987; Foufoula-Georgiou and Georgakakos, 1988) and, as
regards at-site models, precipitation models can be catego-
rized into two broad types: “discrete time-series models” and
“point processes models”. Models of the former type, that in-
clude AutoRegressive Stochastic Models (Box and Jenkins,
1976; Salas et al., 1980; Brockwell and Davis, 1987; Bur-
lando et al., 1993; Hipel and McLeod, 1994; Burlando et
al., 1996; Toth et al., 2000), describe the rainfall process at
discrete time steps, are not intermittent and therefore can be
applied for describing the “within storm” rainfall. Models
of the latter type (Lewis, 1964; Kavvas and Delleur, 1981;
Smith and Karr, 1983; Rodriguez-Iturbe et al., 1984, 1987;
Rodriguez-Iturbe, 1986; Cowpertwait et al., 1996; Sirangelo
and Iiritano, 1997; Calenda and Napolitano, 1999; Montanari
and Brath, 1999; Cowpertwait, 2004) are continuous time se-
ries models, are intermittent and therefore can simulate inter-
storm periods also.

In the present work, a special kind of AutoRegressive
model, named PRAISE (Prediction of Rainfall Amount In-
side Storm Events), is described. It can be considered as a
simple and useful tool for at site nowcasting precipitation,
especially for applications in rainfall-runoff models, regard-
ing small basins, and forecasting landslides, induced by rain-
fall, models. The paper is structured in three sections, ex-
cluding the introduction: in Sect. 2 the theoretical bases of
the stochastic model are illustrated; while in Sect. 3 model
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calibration is shown; finally, Sect. 4 concerns the application
of the model to the raingauge network of the Calabria region,
in Southern Italy, with particular regard to the Cosenza rain-
gauge.

2 The PRAISE model

In the PRAISE model, the rainfall heightshn, cumulated over
intervals] (n−1) 1t, n1t ], are considered as a realisation of
a weakly stationary stochastic process with discrete param-
eter{Hn; n∈I }, whereI indicates the integer numbers. The
Hn are non-negative random variables of mixed type, with
finite probability on zero value and infinitesimal probability
on positive values. In the following the instanti1t=t0 is as-
sumed as current time, so that the observed rainfall heights
are with subscripts less or equal toi and the probabilistic pre-
diction will be referred to the rainfall heights with subscripts
greater thani.

The main feature of the approach suggested in the
PRAISE model is the identification of a random vari-
able Z

(ν)
i , a suitable function of theν random variables

Hi, Hi−1, ..., Hi−ν+1, such that its stochastic dependence
with the random variableHi+1 describes the whole correl-
ative structure of the process{Hn; n∈I }. Two steps are re-
quired to identifyZ(ν)

i :
a) the individuation of the process “memory” extensionν;
b) the optimal choice of the function depending on the ran-

dom variablesHi, Hi−1, ..., Hi−ν+1 definingZ
(ν)
i .

After this, the PRAISE model provides the identification

of the joint probability densityf
Hi+1,Z

(ν)
i

(
hi+1, z

(ν)
i

)
and its

utilisation for the real time forecasting of rainfall heights dur-
ing a storm event.

2.1 Extension of the “memory”

In the PRAISE model, the linear stochastic dependence be-
tween the random variableHi+1 and the generic antecedent
random variablesHi−j , j=0, 1, 2, ..., is considered negligi-
ble when the correspondent sample coefficient of partial au-
tocorrelation results less than a fixed value close to zero. The
results given by this approach are similar to the more rigor-
ous and less simple general method, in which the absence
of a linear stochastic dependence should be tested verifying
that the sample coefficient of partial autocorrelation, between
such random variables, exhibits a value inside a confidence
interval, which does not permit the rejection of the null value
hypothesis for the correspondent theoretical quantity.

In order to determine the extension of the “memory”
for the process{Hn; n∈I }, the absence of significant par-
tial autocorrelation must be checked for increasing values
of ν. For each value ofν must be verified the negligibil-
ity of all the sample coefficients of partial autocorrelation
ρHi+1 Hi−ν+1−m·Hi ... Hi−ν+1 characterised by a couple of pri-

mary subscriptsHi+1, Hi−ν; Hi+1, Hi−ν−1; ... and by sec-
ondary subscriptsHi, Hi−1, ... , Hi−v+1.

Pratically, evaluation ofρHi+1 Hi−ν+1−m·Hi ... Hi−ν+1 must be
performed using the sample coefficients of partial autocor-
relationrHi+1Hi−ν+1−m·Hi ...Hi−ν+1, m=1, 2, ..., obtained by an
observed sampleh1, h2, ... , hN of rainfall heights cumu-
lated over time intervals of duration1t , after estimation of
autocorrelationρk by sample autocorrelation coefficientsrk
(Kendall and Stuart, 1969); for the hypothesis of weakly sta-
tionary process, autocorrelation depends only on lagk.

Finally, to estimate the extension of the “memory”, a sim-
ple way can be obtained introducing the sample maximum
absolute scattering:

χr (ν) = max
1≤m<∞

∣∣ rHi+1Hi−ν+1−m·Hi ... Hi−ν+1

∣∣ m=1, 2, ... (1)

The extension of the process “memory” can be assumed
equal to the minimum value ofν for whichχr (ν) results less
than a fixed critical valueχr,cr .

2.2 Structure of the random variableZ
(ν)
i

The criterion adopted in the PRAISE model to define a func-
tional dependence between the random variableZ

(ν)
i and

the random variablesHi, Hi−1, ..., Hi−ν+1 is the maximi-
sation of the coefficient of linear correlationρ

Hi+1,Z
(ν)
i

be-

tween the sameZ(ν)
i and the random variableHi+1. This

choice allows, once identified the joint probability den-

sity f
Hi+1,Z

(ν)
i

(
hi+1, z

(ν)
i

)
, the best prediction of rainfall

heightsHi+1 during a storm event. If a functional relation-
ship Z

(ν)
i =f01 ( Hi, Hi−1, ... , Hi−ν+1) satisfies the crite-

rion here adopted, then all the functions:

fab ( Hi, Hi−1, ... , Hi−ν+1)

= a + b f01 ( Hi, Hi−1, ... , Hi−ν+1) (2)

with a and b generic constants, satisfy the same criterion.
In other words, the criterion of maximisation of the coeffi-
cient of linear correlation betweenZ(ν)

i andHi+1 identifies a
“class of functions”, defined by Eq. (2), with all the members
equivalent for the purposes of the suggested model.

As regards the analytical form of the relationship linking
Z

(ν)
i to Hi, Hi−1, ... , Hi−ν+1, the more suitable choice is,

clearly, the linear function:

Z
(ν)
i = β +

ν−1∑
j=0

α′

jHi−j (3)

In this condition, in fact, the coefficients of the linear re-
lationship that maximisesρ

Hi+1,Z
(ν)
i

are simply the coef-

ficients of the linear partial regression amongHi+1 and
Hi, Hi−1, ..., Hi−ν+1:

E
(
Hi+1 | H ′

i , H ′

i−1, ..., H ′

i−ν+1

)
= µH +

ν−1∑
j=0

α′

jH
′

i−j (4)
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where E (.) is the expected value operator,µH =E (Hn),
constant value for everyn because of the hypoth-
esis of weakly stationary stochastic process, and
H ′

i =Hi−µH , H ′

i−1=Hi−1−µH , H ′

i−ν+1=Hi−ν+1−µH .
Theα′

j coefficients are evaluated as:

α′

j = −λ̃
(ν+1)
1(j+2)

/
λ̃

(ν+1)
11 (5)

whereλ̃
(ν+1)
1(j+2) e λ̃

(ν+1)
11 are the cofactors of the Laurent ma-

trix:

[
3(ν+1)

]
=


1 ρ1 ρ2 ... ρν

ρ1 1 ρ1 ... ρν−1
ρ2 ρ1 1 ... ρν−2
... ... ... ... ...

ρν ρν−1 ρν−2 ... 1

 (6)

These coefficients can be readily evaluated utilising again an
observed sampleh1, h2, ... , hN of rainfall heights cumu-
lated over time intervals of duration1t . However, it should
be highlighted that, as a consequence of the non-negative
character of the involved random variables, the coefficients
α′

j must satisfy the conditionsα′

j≥0 for j=0, 1, ... , ν−1.
Moreover, the coefficientsα′

j identify, among all the possi-
ble linear combinations ofHi, Hi−1, ..., Hi−ν+1 variables,
the one which maximizes the linear correlation coefficient
with Hi+1.

Then, definition ofZ(ν)
i variable is very simple: letZ(ν)

∗i

be a variable defined as:

Z
(ν)
∗i = µH +

ν−1∑
j=0

α′

jH
′

i−j (7a)

it can be noted that it is equal to the conditional expected
value E

(
Hi+1 | H ′

i , H ′

i−1, ..., H ′

i−ν+1

)
; rewriting Eq. (7a)

utilising Hi, Hi−1, ..., Hi−ν+1:

Z
(ν)
∗i =

ν−1∑
j=0

α′

jHi−j +

(
1 −

ν−1∑
j=0

α′

j

)
µH (7b)

and introducing the standardised coefficients:

αj = α′

j

/
ν−1∑
κ=0

α′
κ (8)

for which the conditions 0<αj≤1, for j=0, 1, ... , ν−1, and
ν−1∑
j=0

αj=1 are respected,Z(ν)
∗i can be expressed as:

Z
(ν)
∗i =

ν−1∑
k=0

α′

k

ν−1∑
j=0

αjHi−j +

(
1 −

ν−1∑
j=0

α′

j

)
µH (9)

DefiningZ
(ν)
i as:

Z
(ν)
i =

ν−1∑
j=0

αjHi−j (10)

it is simple to verify thatZ(ν)
∗i andZ

(ν)
i variables are con-

nected by a linear transformation, identifying a class of func-
tion, defined by Eq. (2). Consequently the correlation coeffi-
cientρ

Hi+1, Z
(ν)
i

is equal toρ
Hi+1, Z

(ν)
∗i

.

Equation (10) shows that the random variableZ
(ν)
i can be

regarded as a weighted average of theν antecedent rainfall
heights with weights expressed by the coefficientsαj .

2.3 Joint probability densityf
Hi+1,Z

(ν)
i

(
hi+1, z

(ν)
i

)
Keeping in mind the character of random variable of mixed
type for Hi+1 and, therefore, forZ(ν)

i , the joint probability

densityf
Hi+1,Z

(ν)
i

(
hi+1, z

(ν)
i

)
must be written in the form:

f
Hi+1,Z

(ν)
i

(
hi+1, z

(ν)
i

)
= p·,·δ (hi+1) δ

(
z
(ν)
i

)
+p+,·f

(+,·)
Hi+1,0

(hi+1) δ
(
z
(ν)
i

)
+p·,+f

(·,+)

0,Z
(ν)
i

(
z
(ν)
i

)
δ (hi+1)

+p+,+f
(+,+)

Hi+1,Z
(ν)
i

(
hi+1, z

(ν)
i

)
(11)

where δ (.) is Dirac’s delta function,p·,·, p+,·, p·,+ and

p+,+ indicate, respectively, Pr
[
Hi+1=0 ∩ Z

(ν)
i =0

]
,

Pr
[
Hi+1>0 ∩ Z

(ν)
i =0

]
, Pr

[
Hi+1=0 ∩ Z

(ν)
i >0

]
and Pr

[
Hi+1>0 ∩ Z

(ν)
i >0

]
, with, obviously,

p·,·+p+,·+p·,++p+,+=1, and:

f
(+,+)

Hi+1,Z
(ν)
i

(
hi+1, z

(ν)
i

)
· dhi+1dz

(ν)
i =

Pr
[
hi+1 ≤ Hi+1 < hi+1 + dhi+1 ∩

z
(ν)
i ≤ Z

(ν)
i < z

(ν)
i + dz

(ν)
i | Hi+1 > 0 ∩ Z

(ν)
i > 0

]
(12)

f
(+,·)
Hi+1,0

(hi+1) · dhi+1 =

Pr
[
hi+1 ≤ Hi+1 < hi+1 +dhi+1| Hi+1>0 ∩ Z

(ν)
i =0

]
(13)

f
(·,+)

0,Z
(ν)
i

(
z
(ν)
i

)
·dz

(ν)
i =

Pr
[
z
(ν)
i ≤Z

(ν)
i <z

(ν)
i +dz

(ν)
i

∣∣∣Hi+1 = 0 ∩ Z
(ν)
i > 0

]
(14)

A suitable mathematical form forf (+,+)

Hi+1,Z
(ν)
i

(
hi+1, z

(ν)
i

)
may

be achieved considering the standardised bivariate probabil-
ity density of Moran and Downton (Kotz et al., 2000):

fX,Y (x, y) = θ exp[−θ (x + y)] I0

[
2
√

θ (θ − 1) xy
]

x > 0, y > 0; θ ≥ 1 (15)

www.hydrol-earth-syst-sci.net/11/1341/2007/ Hydrol. Earth Syst. Sci., 11, 1341–1351, 2007



1344 B. Sirangelo et al.: A new stochastic model to nowcast rainfall at site

whereI0 (u) is the modified Bessel functionI of zero order
(Abramowitz and Stegun, 1970).

An important peculiarity of this distribution is the capacity
to reproduce any positive correlative structure betweenX and
Y variables; they will be independent forθ=1 and connected
in deterministic way forθ→+∞.

Applying a double power transformation:

x = αh,z (hi+1)
βh,z hi+1 > 0; αh,z > 0, βh,z > 0 (16)

y = γh,z

(
z
(ν)
i

)
δh,z z

(ν)
i > 0; γh,z > 0, δh,z > 0 (17)

and rewritingθ asθh,z, the bivariate probability density so
obtained, that can be called Weibull-Bessel, is given by:

f
(+,+)

Hi+1,Z
(ν)
i

(
hi+1, z

(ν)
i

)
= θh,z αh,zβh,z (hi+1)

βh,z−1 γh,zδh,z

(
z
(ν)
i

)δh,z−1
×

exp

{
−θh,z

[
αh,z (hi+1)

βh,z + γh,z

(
z
(ν)
i

)δh,z
]}

×

I0

[
2

√
θh,z

(
θh,z − 1

)
αh,z (hi+1)

βh,z γh,z

(
z
(ν)
i

)δh,z

]
(18)

where hi+1>0, z
(ν)
i >0; αh,z>0, βh,z>0, γh,z>0, δh,z>0,

θh,z≥1. As can be simply verified, the marginal probability
densities of the Eq. (18) are Weibull densities with parame-
ters αh,z, βh,z andγh,z, δh,z. Consequently, moments of the
distribution are immediate, as regards means and variances:

µ
(+,+)
Hi+1

= E
(
Hi+1| Hi+1 > 0 ∩ Z

(ν)
i > 0

)
=

0
(
1 + 1

/
βh,z

)
α

1
/
βh,z

h,z

(19)

(
σ 2

Hi+1

)(+,+)

= var
(
Hi+1| Hi+1 > 0 ∩ Z

(ν)
i > 0

)
(20)

=
1

α
2
/
βh,z

h,z

[
0
(
1+2

/
βh,z

)
−02 (1+1

/
βh,z

)]

µ
(+,+)

Z
(ν)
i

= E
(
Z

(ν)
i

∣∣∣Hi+1 > 0 ∩ Z
(ν)
i > 0

)
=

0
(
1 + 1

/
δh,z

)
γ

1
/
δh,z

h,z

(21)

(
σ 2

Z
(ν)
i

)(+,+)

= var
(
Z

(ν)
i

∣∣∣Hi+1 > 0 ∩ Z
(ν)
i > 0

)
(22)

=
1

γ
2
/
δh,z

h,z

[
0
(
1+2

/
δh,z

)
−02 (1+1

/
δh,z

)]

Moreover, it can be proved that the coefficient of linear cor-
relation between the random variablesHi+1 andZ

(ν)
i , dis-

tributed according to the Eq. (18), is:

ρ
(+,+)

Hi+1,Z
(ν)
i

=
2F1

(
−1
/
βh,z , −1

/
δh,z; 1 ; 1−1

/
θh,z

)
−1√[

0(1+2
/
βh,z)

02(1+1
/
βh,z)

−1
]

·

[
0(1+2

/
δh,z)

02(1+1
/
δh,z)

−1
] (23)

where 0 (u) is the complete gamma function and
2F1 (a, b; c; u) is the hypergeometric function (Abramowitz
and Stegun, 1970). It must be pointed out how higher values
of θh,z parameter give higher values ofρ

(+,+)

Hi+1,Z
(ν)
i

.

As regards the couple of probability densities

f
(+,·)
Hi+1,0

(hi+1) and f
(·,+)

0, Z
(ν)
i

(
z
(ν)
i

)
, the PRAISE model,

in the form here employed, assumes again Weibull densities
with parameters, respectively,αh,·, βh,· andγ·,z, δ·,z:

f
(+,·)
Hi+1,0

(hi+1) = αh,·βh,· (hi+1)
βh,·−1 exp

[
−αh,· (hi+1)

βh,·
]

hi+1 > 0; αh,· > 0, βh,· > 0 (24)

f
(·,+)

0,Z
(ν)
i

(
z
(ν)
i

)
= γ·,zδ·,z

(
z
(ν)
i

)δ·,z−1
exp

[
−γ·,z

(
z
(ν)
i

)δ·,z
]

z
(ν)
i > 0; γ·,z > 0, δ·,z > 0 (25)

3 Parameter estimation

The parameter estimation for the bivariate probability density

f
Hi+1,Z

(ν)
i

(
hi+1, z

(ν)
i

)
can be made on the basis of a sample

h1, h2, ... , hN of rainfall heights cumulated over time in-
tervals of duration1t . First of all, starting from the sample
h1, h2, ... , hN and using the Eq. (10), a “sample” ofZ(ν)

can be calculated, namelyz(ν)
1 , z

(ν)
2 , ..., z

(ν)
N . The probabili-

ties p·,·, p+,·, p·,+ andp+,+, could be then estimated (ac-
cording to the maximum likelihood method) by the frequen-
ciesN (·,·)

/
N , N (+,·)

/
N , N (·,+)

/
N andN (+,+)

/
N of the

eventsHi+1=0 ∩ Z
(ν)
i =0, Hi+1>0 ∩ Z

(ν)
i =0, Hi+1=0 ∩

Z
(ν)
i >0 and Hi+1>0 ∩ Z

(ν)
i >0 evaluated on the basis of

the bivariate sampleh1, z
(ν)
1 ; h2, z

(ν)
2 ; ...; hN , z

(ν)
N . Accord-

ing to the method of moments, the parametersαh,·, βh,· and
γ·,z, δ·,z could be estimated fitting means and standard devi-
ationsm(+,·)

Hi+1
, s

(+,·)
Hi+1

andm
(·,+)

Z
(ν)
i

, s
(·,+)

Z
(ν)
i

of the bivariate sample

h1, z
(ν)
1 ; h2, z

(ν)
2 ; ...; hN , z

(ν)
N restricted, respectively, by the

conditions,hj>0, z
(ν)
j =0 andhj=0, z

(ν)
j >0:

β̂h,· = βh,· : 0
(
1 + 2

/
βh,·

)/
02 (1 + 1

/
βh,·

)
= 1 +

(
s2
Hi+1

) (+,·)
/(

m
(+,·)
Hi+1

)2
(26)

α̂h,· =

[
0
(
1 + 1

/
β̂h,·

)/
m

(+,·)
Hi+1

] β̂h,·

(27)
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(a)

(b)

Fig. 1. (a) Location of the Calabria region, in the Southern Italy;
(b) Telemetering Raingauge Network.

δ̂·,z = δ·,z : 0
(
1 + 2

/
δ·,z

)/
02 (1 + 1

/
δ·,z

)
= 1 +

(
s2
Z

(ν)
i

) (·,+)
/(

m
(·,+)

Z
(ν)
i

)2

(28)

γ̂·,z =

[
0
(
1 + 1

/
δ̂·,z

)/
m

(·,+)

Z
(ν)
i

]δ̂·,z

(29)

Similarly, the parameters of the Weibull-Bessel den-
sity, αh,z, βh,z, γh,z, δh,z and θh,z could be esti-
mated fitting the marginal means and standard devia-
tions m

(+,+)
Hi+1

, s
(+,+)
Hi+1

and m
(+,+)

Z
(ν)
i

, s
(+,+)

Z
(ν)
i

, and the coeffi-

cient of linear correlationr(+,+)

Hi+1,Z
(ν)
i

of the bivariate sam-

ple h1, z
(ν)
1 ; h2, z

(ν)
2 ; ...; hN , z

(ν)
N restricted by the condition

hj>0, z(ν)
j >0:

β̂h,z = βh,z : 0
(
1 + 2

/
βh,z

)/
02 (1 + 1

/
βh,z

)

Fig. 2. Sample autocorrelograms referred to the Cosenza Rain-
gauge.

= 1 +

(
s2
Hi+1

)(+,+)
/(

m
(+,+)
Hi+1

)2
(30)

α̂h,z =

[
0
(
1 + 1

/
β̂h,z

)/
m

(+,+)
Hi+1

] β̂h,z

(31)

δ̂h,z = δh,z : 0
(
1 + 2

/
δh,z

)/
02 (1 + 1

/
δh,z

)
= 1 +

(
s2
Z

(ν)
i

)(+,+)
/(

m
(+,+)

Z
(ν)
i

)2

(32)

γ̂h,z =

[
0
(
1 + 1

/
δ̂h,z

)/
m

(+,+)

Z
(ν)
i

] δ̂h,z

(33)

θ̂h,z = θh,z : 2F1

(
−

1

β̂h,z

, −
1

δ̂h,z

; 1 ; 1 −
1

θh,z

)

= 1 + r
(+,+)

Hi+1,Z
(ν)
i

s
(+,+)
Hi+1

m
(+,+)
Hi+1

s
(+,+)

Z
(ν)
i

m
(+,+)

Z
(ν)
i

(34)

Equations (26), (28), (30), (32), (34) must be solved by nu-
merical method (Press et al., 1988).

4 Application

Model calibration was performed using the hourly rain
heights database of the tele-metering raingauge network of
the “Dipartimento per la Protezione Civile – Centro Fun-
zionale MeteoIdrologico della Regione Calabria”. The rain-
gauge network, located in the Calabria region, Southern Italy,
is made up of 104 stations (Fig. 1). Approximately, 14 mil-
lion hourly rainfalls form the database, of which about 7%
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(a)

(b)

Fig. 3. (a)Mapping ofθh,z parameter;(b) Digital Elevation Model
of the Calabria region.

are rainy. In order to respect the hypothesis of stationary
process, only the data measured during the “rainy season”,
1 October–31 May has been used (De Luca, 2005). In this
period, correlation structure, mean and variance of the sam-
ple appear significantly homogeneous. In particular, consid-
ering hourly rain measurements of Cosenza raingauge, cov-
ering a period of about 15 years, and subdividing the year
into three subperiods of four months (1 October–31 January;
1 February–31 May; 1 June–30 September), sample means
and variances of the variable H are shown in Table 1, and

Fig. 4. Memory extension (rainy season) referred to the Cosenza
Raingauge.

Table 1. Cosenza raingauge: sample means and variances for three
subperiods of the year.

Season SubPeriod sample
mean
(mm)

sample
variance
(mm2)

Rainy season
1 Oct–31 Jan 0.14 0.091

1 Feb–31 May 0.12 0.084

Dry season 1 June–30 Sep 0.04 0.026

sample autocorrelograms are reported in Fig. 2. It appears
plausible to consider as stationary the period comprising the
first two subperiods. It must be highlighted that, because of
the sample size, stationarity analysis based on a further sub-
division into more subperiods appears unsuitable because of
the greater uncertainty of moments evaluation.

The model parameters have been estimated for every rain-
gauge. Subsequently, each parameter was mapped on the
spatial regional domain by using a spline technique. The ex-
tension of the “memory”, determined by the technique de-
scribed in the Sect. 2.1 fixingχr,cr=0.025, has been found
equal toν̂=8 for all the tele-metering raingauges. An exam-
ple of parameter mapping, referred toθh,z is represented in
Fig. 3a, that shows greater values, and consequently higher
values ofρ(+,+)

Hi+1,Z
(ν)
i

correlation, located in the part of region

characterized by greater altitude, as depicted by the compar-
ison with the Digital Elevation Model of the Calabria region
(Fig. 3b).

In Fig. 4 memory extension, referred to the rainy season
of the Cosenza raingauge, is depicted.
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Table 2. Cosenza raingauge: estimated values of theαj coefficients.

lagk 1 2 3 4 5 6 7 8

α̂j , j=k−1 0.717 0.092 0.056 0.040 0.031 0.025 0.021 0.018

(a) (b)

(c) (d)

Fig. 5. Cosenza raingauge: plots on Weibull probabilistic papers of empirical and Weibull distributions for the variables(a) Hi+1
∣∣Hi+1>0∩

Z
(ν)
i

>0; (b) Z
(ν)
i

∣∣∣Hi+1>0 ∩ Z
(ν)
i

>0; (c) Hi+1
∣∣Hi+1>0 ∩ Z

(ν)
i

=0; (d) Z
(ν)
i

∣∣∣Hi+1=0 ∩ Z
(ν)
i

>0.

Fig. 6. Validation results for all tested events.

Table 3. Cosenza raingauge: estimated values ofp·,·, p+,·, p·,+

andp+,+.

p̂·,· p̂+,· p̂·,+ p̂+,+

0.76 0.01 0.14 0.09

The estimated coefficientŝαj , j=1, 2, ..., 8, given
by Eqs. (5–8) once calculated the sample coefficients
of the linear partial regression betweenHi+1 and
Hi, Hi−1, ..., Hi−ν+1, are listed in Table 2. Finally,
all the parameters of the bivariate probability density

f
Hi+1,Z

(ν)
i

(
hi+1, z

(ν)
i

)
, estimated according to the methods

described in Sect. 3, are reported in Tables 3 and 4. In
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(a) (b)

(c)

Fig. 7. Application of PRAISE Model relative to 19 November 1996, for the Cosenza raingauge, starting from(a) 11:00 LT; (b) 12:00 LT;
(c) 13:00 LT.

Table 4. Cosenza raingauge: estimated parameters of the densitiesf
(+,+)

Hi+1,Z
(ν)
i

(
hi+1, z

(ν)
i

)
, f

(+,·)
Hi+1,0

(
hi+1

)
andf

(·,+)

0,Z
(ν)
i

(
z
(ν)
i

)
.

Period 1
/
αh,z (mm) βh,z 1

/
γh,z (mm) δh,z θh,z 1

/
αh,· (mm) βh,· 1

/
γ·,z (mm) δ·,z

1 Oct–31 May 1.04 0.80 0.90 0.80 1.63 0.72 0.63 0.31 0.52
1 Oct–31 Jan 1.09 0.79 0.95 0.80 1.65 0.76 0.65 0.32 0.50
1 Feb–31 May 0.99 0.82 0.83 0.81 1.59 0.69 0.61 0.29 0.56

the latter table, temporary changes of the parameter over
subperiods of the rainy season are also reported.

In Fig. 5 empirical distribution functions of the vari-

ables Hi+1| Hi+1>0 ∩ Z
(ν)
i >0, Z

(ν)
i

∣∣∣Hi+1>0 ∩ Z
(ν)
i >0,

Hi+1| Hi+1>0∩Z
(ν)
i =0 andZ

(ν)
i

∣∣∣Hi+1=0∩Z
(ν)
i >0, for the

Cosenza raingauge, are depicted. To these empirical distribu-
tions, Weibull distribution functions, with parameters (αh,z,

βh,z), (γh,z, δh,z), (αh,·, βh,·) and (γ·,z, δ·,z), are plotted. The
plots indicate that the Weibull distributions are acceptable
marginals for these variables.

4.1 Validation of the model

As regards rainfall forecasting, each simulation requires the
knowledge of the rainfalls relative to the eight previous
hours. Starting from these, simulations can be carried out for
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(a) (b)

(c)

Fig. 8. Application of PRAISE Model relative to 16 December 2001, for the Catanzaro raingauge, starting from(a) 15:00 LT;(b) 16:00 LT;
(c) 17:00 LT.

the successive hours. The temporal extension of the forecast
should not exceed six hours. Beyond this limit the results
become similar to the unconditional ones and, then, a model
update by observed precipitation is necessary.

In the applications, using the Monte Carlo technique,
the simulations are carried out repeating the process 10 000
times in order to have a large synthetic sample of rain-
fall heights for every forecasting hour. Rainfall heights
are generated using the conditional probability distributions

f
Hi+1| Z

(ν)
i

(
hi+1|Z

(ν)
i = z

(ν)
i

)
, easily obtained from Eq. (11).

The Monte Carlo technique is adopted because of the com-
plexity of determining analytical probabilistic distributions
for rainfall heights relative to forecasting the hours succes-
sive to the first one. For these distributions, convolution op-
erations should be required.

PRAISE model has been validated considering 100 rainfall
events out of about 10 000 ones. These events have been cho-
sen in random way and weren’t also used for model calibra-

tion. However, the number of these constitutes a small part
of the whole ensemble of rainfall events and, consequently,
their exclusion for model calibration doesn’t modify param-
eter estimation.

In Fig. 6, the histogram, representing, for every forecasting
hour, the percentile 95% of the events utilized for validation,
is illustrated. Referring to the same percentile, in the figure,
median value and 90% band comprising PRAISE simulated
value are also reported.

In particular, as an example of model output, in this paper
the applications relative to 19 November 1996 (Fig. 7) for the
Cosenza raingauge, and 16 December 2001 (Fig. 8) for the
Catanzaro raingauge are illustrated.

For every event, the real values of the precipitation have
been compared with the percentiles 80%, 90% and 95%
of the probabilistic distributions of every forecasting hour.
Moreover, for every event the PRAISE model was applied
shifting the starting point of forecasting for three successive
hours.
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The Figs. 7–8 show that rainfall heights of the real event
fall between percentiles 80% and 90%. These results indi-
cate the capability of the model to identify, for the forecast
hours, statistical confidence limits containing the real rainfall
heights.

5 Conclusions

This paper presents a new stochastic model named PRAISE
to forecast rainfall heights at site. The mathematical back-
ground is characterized by a bivariate probability distribu-
tion, referred to the random variablesHi+1 andZ

(ν)
i , repre-

senting rainfall in a generic site and antecedent precipitation
in the same site.

The peculiarity of PRAISE is the availability of the prob-
abilistic distributions of rainfall heights for the forecasting
hours, conditioned by the values of observed precipitation.

PRAISE was applied to all the telemetering raingauges of
the Calabria region, in Southern Italy; the calibration model
shows that the hourly rainfall series present a constant value
of memoryν equal to 8 h, for every raingauge of the Calabria
network. Moreover, analysingθh,z parameter mapping, it
must be pointed out how higher values ofρ

(+,+)

Hi+1,Z
(ν)
i

correla-

tion are located in the part of region characterized by greater
altitude.

The examples of validation, presented here, regarding the
Cosenza and Catanzaro raingauges, indicate the capability
of the model to identify, for the forecasting hours, statistical
confidence limits containing the real rainfall heights. The
PRAISE model therefore can be considered a very useful and
simple tool for forecasting precipitation and consequently,
using rainfall-runoff models or hydro-geotechnical models,
floods or landslides, in planning and managing a warning
system.

Edited by: A. Gelfan
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