6 research outputs found

    Etude du rÎle de la protéine kinase DCLK3 dans les mécanismes de neurodégénérescence dans la maladie de Huntington

    No full text
    DCLK3 (Doublecortin-like kinase 3) is a neuronal kinase enriched in the striatum and in the dentate gyrus of the hippocampus. DCLK3 expression is markedly reduced in the brain of Huntington’s disease (HD) patients. However, its role remains unknown. The laboratory previously showed that DCLK3 could play a neuroprotective role, specifically in different HD models. The overexpression of Dclk3 in the striatum produces neuroprotection against mutant huntingtin (mHtt) toxicity and ameliorates motor deficits in rodent models of HD (knock-in mice with 140 CAG repeats). Our recent results indicate that DCLK3 is localized in the nucleus of neurons and may play a role in transcription through epigenetic mechanisms. Here, we aim at investigating further the role of DCLK3 in the brain. To do so, we generated mice with loxP sites in the Dclk3 gene (DCLK3flox/flox). We first crossed them with CMV-Cre mice to obtain constitutive knockout Dclk3 mice in the whole body. Our behavioral study on memory, anxiety and motor phenotype show no obvious deficit. Likewise, structural analysis in the brain of Dclk3 KO mice in histology and MRI did not highlight any deficit compared to control mice. However the metabolite profile in males at 6 months was slightly but significantly disturbed. Dclk3flox/flox mice were also crossed with Rgs9-cre mice to have Dclk3 deletion in the striatum only. No motor deficits were observed in these mice. Interestingly, the injection of AAV-Cre in the hippocampus of adult Dclk3flox/flox mice tends to produce memory deficits in the water-maze test. These results indicate a potential role of DCLK3 in synaptic plasticity in the hippocampus and suggest that the loss of this protein in HD could contribute to cognitive aspects of the disease. In long term, the signaling involving DCLK3 may constitute an interesting therapeutic target to improve certain neurodegenerative processes.DCLK3 (Doublecortin-like kinase 3) est une protĂ©ine kinase neuronale enrichie dans le striatum et dans le gyrus dentĂ©. L’expression de DCLK3 est nettement diminuĂ©e dans le cerveau des patients atteints de la maladie de Huntington (MH). Cependant, son rĂŽle reste pour l’instant inconnu. Le laboratoire avait prĂ©cĂ©demment montrĂ© que DCLK3 pouvait jouer un rĂŽle neuroprotecteur, en particulier dans diffĂ©rents modĂšles de la MH. En effet, la surexpression de Dclk3 dans le striatum produit un effet neuroprotecteur contre la toxicitĂ© de l’huntingtine mutĂ©e (Httm) et amĂ©liore les dĂ©ficits moteurs dans les modĂšles murins de la MH (knock-in avec 140 rĂ©pĂ©titions de CAG). Nos rĂ©sultats rĂ©cents ont aussi montrĂ© que DCLK3 Ă©tait localisĂ©e dans les noyaux des neurones et pourrait rĂ©guler la transcription par un mĂ©canisme Ă©pigĂ©nĂ©tique. Le but de la prĂ©sente Ă©tude a Ă©tĂ© de mieux comprendre le rĂŽle de DCLK3 dans le cerveau. Pour cela, nous avons produit des souris avec des sites LoxP dans le gĂšne Dclk3 (Dclk3flox/flox). Nous avons d’abord croisĂ© ces souris avec les souris CMV-cre pour obtenir des souris constitutivement dĂ©ficientes en Dclk3 et ceci dans l’ensemble de l’organisme. Nos Ă©tudes comportementales portant sur la mĂ©moire, l’anxiĂ©tĂ© et les performances motrices, n’ont rĂ©vĂ©lĂ© aucun dĂ©ficit majeur dans le phĂ©notype. En accord avec cette observation, l’analyse structurale des cerveaux des souris KO Dck3 par histologie et IRM n’a pas rĂ©vĂ©lĂ© d’atteinte notable par rapport aux animaux tĂ©moins. Cependant, le profil des mĂ©tabolites des mĂąles Ă  6 mois Ă©tait lĂ©gĂšrement mais significativement perturbĂ©. Nous avons Ă©galement croisĂ© les souris Dclk3flox/flox avec des souris Rgs9-cre pour avoir une dĂ©lĂ©tion de Dclk3 uniquement dans le striatum. Aucun dĂ©ficit moteur n’a Ă©tĂ© observĂ© dans ces souris. De maniĂšre intĂ©ressante, l’injection d’AAV-cre dans l’hippocampe des souris adultes Dclk3flox/flox tend Ă  crĂ©er des dĂ©ficits de mĂ©moire au test de la piscine de Morris. L’ensemble de nos rĂ©sultats indique un rĂŽle de DCLK3 dans la plasticitĂ© synaptique dans l’hippocampe et suggĂšre que la perte de DCLK3 dans la MH contribuerait aux aspects cognitifs de la maladie. Ainsi, Ă  terme, la signalisation impliquant DCLK3 pourrait constituer une cible thĂ©rapeutique intĂ©ressante pour amĂ©liorer certains processus neurodĂ©gĂ©nĂ©ratifs

    Etude du rÎle de la protéine kinase DCLK3 dans les mécanismes de neurodégénérescence dans la maladie de Huntington

    Get PDF
    DCLK3 (Doublecortin-like kinase 3) is a neuronal kinase enriched in the striatum and in the dentate gyrus of the hippocampus. DCLK3 expression is markedly reduced in the brain of Huntington’s disease (HD) patients. However, its role remains unknown. The laboratory previously showed that DCLK3 could play a neuroprotective role, specifically in different HD models. The overexpression of Dclk3 in the striatum produces neuroprotection against mutant huntingtin (mHtt) toxicity and ameliorates motor deficits in rodent models of HD (knock-in mice with 140 CAG repeats). Our recent results indicate that DCLK3 is localized in the nucleus of neurons and may play a role in transcription through epigenetic mechanisms. Here, we aim at investigating further the role of DCLK3 in the brain. To do so, we generated mice with loxP sites in the Dclk3 gene (DCLK3flox/flox). We first crossed them with CMV-Cre mice to obtain constitutive knockout Dclk3 mice in the whole body. Our behavioral study on memory, anxiety and motor phenotype show no obvious deficit. Likewise, structural analysis in the brain of Dclk3 KO mice in histology and MRI did not highlight any deficit compared to control mice. However the metabolite profile in males at 6 months was slightly but significantly disturbed. Dclk3flox/flox mice were also crossed with Rgs9-cre mice to have Dclk3 deletion in the striatum only. No motor deficits were observed in these mice. Interestingly, the injection of AAV-Cre in the hippocampus of adult Dclk3flox/flox mice tends to produce memory deficits in the water-maze test. These results indicate a potential role of DCLK3 in synaptic plasticity in the hippocampus and suggest that the loss of this protein in HD could contribute to cognitive aspects of the disease. In long term, the signaling involving DCLK3 may constitute an interesting therapeutic target to improve certain neurodegenerative processes.DCLK3 (Doublecortin-like kinase 3) est une protĂ©ine kinase neuronale enrichie dans le striatum et dans le gyrus dentĂ©. L’expression de DCLK3 est nettement diminuĂ©e dans le cerveau des patients atteints de la maladie de Huntington (MH). Cependant, son rĂŽle reste pour l’instant inconnu. Le laboratoire avait prĂ©cĂ©demment montrĂ© que DCLK3 pouvait jouer un rĂŽle neuroprotecteur, en particulier dans diffĂ©rents modĂšles de la MH. En effet, la surexpression de Dclk3 dans le striatum produit un effet neuroprotecteur contre la toxicitĂ© de l’huntingtine mutĂ©e (Httm) et amĂ©liore les dĂ©ficits moteurs dans les modĂšles murins de la MH (knock-in avec 140 rĂ©pĂ©titions de CAG). Nos rĂ©sultats rĂ©cents ont aussi montrĂ© que DCLK3 Ă©tait localisĂ©e dans les noyaux des neurones et pourrait rĂ©guler la transcription par un mĂ©canisme Ă©pigĂ©nĂ©tique. Le but de la prĂ©sente Ă©tude a Ă©tĂ© de mieux comprendre le rĂŽle de DCLK3 dans le cerveau. Pour cela, nous avons produit des souris avec des sites LoxP dans le gĂšne Dclk3 (Dclk3flox/flox). Nous avons d’abord croisĂ© ces souris avec les souris CMV-cre pour obtenir des souris constitutivement dĂ©ficientes en Dclk3 et ceci dans l’ensemble de l’organisme. Nos Ă©tudes comportementales portant sur la mĂ©moire, l’anxiĂ©tĂ© et les performances motrices, n’ont rĂ©vĂ©lĂ© aucun dĂ©ficit majeur dans le phĂ©notype. En accord avec cette observation, l’analyse structurale des cerveaux des souris KO Dck3 par histologie et IRM n’a pas rĂ©vĂ©lĂ© d’atteinte notable par rapport aux animaux tĂ©moins. Cependant, le profil des mĂ©tabolites des mĂąles Ă  6 mois Ă©tait lĂ©gĂšrement mais significativement perturbĂ©. Nous avons Ă©galement croisĂ© les souris Dclk3flox/flox avec des souris Rgs9-cre pour avoir une dĂ©lĂ©tion de Dclk3 uniquement dans le striatum. Aucun dĂ©ficit moteur n’a Ă©tĂ© observĂ© dans ces souris. De maniĂšre intĂ©ressante, l’injection d’AAV-cre dans l’hippocampe des souris adultes Dclk3flox/flox tend Ă  crĂ©er des dĂ©ficits de mĂ©moire au test de la piscine de Morris. L’ensemble de nos rĂ©sultats indique un rĂŽle de DCLK3 dans la plasticitĂ© synaptique dans l’hippocampe et suggĂšre que la perte de DCLK3 dans la MH contribuerait aux aspects cognitifs de la maladie. Ainsi, Ă  terme, la signalisation impliquant DCLK3 pourrait constituer une cible thĂ©rapeutique intĂ©ressante pour amĂ©liorer certains processus neurodĂ©gĂ©nĂ©ratifs

    Study of the role of a new striatal marker in the neurodegenerescence of Huntington's disease

    No full text
    DCLK3 (Doublecortin-like kinase 3) est une protĂ©ine kinase neuronale enrichie dans le striatum et dans le gyrus dentĂ©. L’expression de DCLK3 est nettement diminuĂ©e dans le cerveau des patients atteints de la maladie de Huntington (MH). Cependant, son rĂŽle reste pour l’instant inconnu. Le laboratoire avait prĂ©cĂ©demment montrĂ© que DCLK3 pouvait jouer un rĂŽle neuroprotecteur, en particulier dans diffĂ©rents modĂšles de la MH. En effet, la surexpression de Dclk3 dans le striatum produit un effet neuroprotecteur contre la toxicitĂ© de l’huntingtine mutĂ©e (Httm) et amĂ©liore les dĂ©ficits moteurs dans les modĂšles murins de la MH (knock-in avec 140 rĂ©pĂ©titions de CAG). Nos rĂ©sultats rĂ©cents ont aussi montrĂ© que DCLK3 Ă©tait localisĂ©e dans les noyaux des neurones et pourrait rĂ©guler la transcription par un mĂ©canisme Ă©pigĂ©nĂ©tique. Le but de la prĂ©sente Ă©tude a Ă©tĂ© de mieux comprendre le rĂŽle de DCLK3 dans le cerveau. Pour cela, nous avons produit des souris avec des sites LoxP dans le gĂšne Dclk3 (Dclk3flox/flox). Nous avons d’abord croisĂ© ces souris avec les souris CMV-cre pour obtenir des souris constitutivement dĂ©ficientes en Dclk3 et ceci dans l’ensemble de l’organisme. Nos Ă©tudes comportementales portant sur la mĂ©moire, l’anxiĂ©tĂ© et les performances motrices, n’ont rĂ©vĂ©lĂ© aucun dĂ©ficit majeur dans le phĂ©notype. En accord avec cette observation, l’analyse structurale des cerveaux des souris KO Dck3 par histologie et IRM n’a pas rĂ©vĂ©lĂ© d’atteinte notable par rapport aux animaux tĂ©moins. Cependant, le profil des mĂ©tabolites des mĂąles Ă  6 mois Ă©tait lĂ©gĂšrement mais significativement perturbĂ©. Nous avons Ă©galement croisĂ© les souris Dclk3flox/flox avec des souris Rgs9-cre pour avoir une dĂ©lĂ©tion de Dclk3 uniquement dans le striatum. Aucun dĂ©ficit moteur n’a Ă©tĂ© observĂ© dans ces souris. De maniĂšre intĂ©ressante, l’injection d’AAV-cre dans l’hippocampe des souris adultes Dclk3flox/flox tend Ă  crĂ©er des dĂ©ficits de mĂ©moire au test de la piscine de Morris. L’ensemble de nos rĂ©sultats indique un rĂŽle de DCLK3 dans la plasticitĂ© synaptique dans l’hippocampe et suggĂšre que la perte de DCLK3 dans la MH contribuerait aux aspects cognitifs de la maladie. Ainsi, Ă  terme, la signalisation impliquant DCLK3 pourrait constituer une cible thĂ©rapeutique intĂ©ressante pour amĂ©liorer certains processus neurodĂ©gĂ©nĂ©ratifs.DCLK3 (Doublecortin-like kinase 3) is a neuronal kinase enriched in the striatum and in the dentate gyrus of the hippocampus. DCLK3 expression is markedly reduced in the brain of Huntington’s disease (HD) patients. However, its role remains unknown. The laboratory previously showed that DCLK3 could play a neuroprotective role, specifically in different HD models. The overexpression of Dclk3 in the striatum produces neuroprotection against mutant huntingtin (mHtt) toxicity and ameliorates motor deficits in rodent models of HD (knock-in mice with 140 CAG repeats). Our recent results indicate that DCLK3 is localized in the nucleus of neurons and may play a role in transcription through epigenetic mechanisms. Here, we aim at investigating further the role of DCLK3 in the brain. To do so, we generated mice with loxP sites in the Dclk3 gene (DCLK3flox/flox). We first crossed them with CMV-Cre mice to obtain constitutive knockout Dclk3 mice in the whole body. Our behavioral study on memory, anxiety and motor phenotype show no obvious deficit. Likewise, structural analysis in the brain of Dclk3 KO mice in histology and MRI did not highlight any deficit compared to control mice. However the metabolite profile in males at 6 months was slightly but significantly disturbed. Dclk3flox/flox mice were also crossed with Rgs9-cre mice to have Dclk3 deletion in the striatum only. No motor deficits were observed in these mice. Interestingly, the injection of AAV-Cre in the hippocampus of adult Dclk3flox/flox mice tends to produce memory deficits in the water-maze test. These results indicate a potential role of DCLK3 in synaptic plasticity in the hippocampus and suggest that the loss of this protein in HD could contribute to cognitive aspects of the disease. In long term, the signaling involving DCLK3 may constitute an interesting therapeutic target to improve certain neurodegenerative processes

    Complementarity of gluCEST and 1^1H‐MRS for the study of mouse models of Huntington's disease

    No full text
    International audienceIdentification of relevant biomarkers is fundamental to understand biological processes of neurodegenerative diseases and to evaluate therapeutic efficacy. Atrophy of brain structures has been proposed as a biomarker, but it provides little information about biochemical events related to the disease. Here, we propose to identify early and relevant biomarkers by combining biological specificity provided by 1H‐MRS and high spatial resolution offered by gluCEST imaging. For this, two different genetic mouse models of Huntington's disease (HD)—the Ki140CAG model, characterized by a slow progression of the disease, and the R6/1 model, which mimics the juvenile form of HD—were used. Animals were scanned at 11.7 T using a protocol combining 1H‐MRS and gluCEST imaging. We measured a significant decrease in levels of N‐acetyl‐aspartate, a metabolite mainly located in the neuronal compartment, in HD animals, and the decrease seemed to be correlated with disease severity. In addition, variations of tNAA levels were correlated with striatal volumes in both models. Significant variations of glutamate levels were also observed in Ki140CAG but not in R6/1 mice. Thanks to its high resolution, gluCEST provided complementary insights, and we highlighted alterations in small brain regions such as the corpus callosum in Ki140CAG mice, whereas the glutamate level was unchanged in the whole brain of R6/1 mice. In this study, we showed that 1H‐MRS can provide key information about biological processes occurring in vivo but was limited by the spatial resolution. On the other hand, gluCEST may finely point to alterations in unexpected brain regions, but it can also be blind to disease processes when glutamate levels are preserved. This highlights in a practical context the complementarity of the two methods to study animal models of neurodegenerative diseases and to identify relevant biomarker

    In vivo imaging of brain glutamate defects in a knock-in mouse model of Huntington's disease

    Get PDF
    International audienceHuntington's disease (HD) is an inherited neurodegenerative disease characterized by motor, cognitive and psychiatric symptoms. Atrophy of the striatum has been proposed for several years as a biomarker to assess disease progression in HD gene carriers. However, it does not provide any information about the biological mechanisms linked to HD pathogenesis. Changes in brain metabolites have been also consistently seen in HD patients and animal models using Magnetic Resonance Spectroscopy (MRS), but metabolite measurements are generally limited to a single voxel. In this study, we used Chemical Exchange Saturation Transfer imaging of glutamate (gluCEST) in order to map glutamate distribution in the brain of a knock-in mouse model (Ki140CAG) with a precise anatomical resolution. We demonstrated that both heterozygous and homozygous mice with pathological CAG repeat expansion in gene encoding huntingtin exhibited an atrophy of the striatum and a significant alteration of their metabolic profile in the striatum as compared to wild type littermate controls. The striatal decrease was then confirmed by gluCEST imaging. Surprisingly, CEST imaging also revealed that the corpus callosum was the most affected structure in both genotype groups, suggesting that this structure could be highly vulnerable in HD. We evaluated for the first time gluCEST imaging as a potential biomarker of HD and demonstrated its potential for characterizing metabolic defects in neurodegenerative diseases in specific regions

    Altered enhancer transcription underlies Huntington’s disease striatal transcriptional signature

    No full text
    International audienceEpigenetic and transcriptional alterations are both implicated in Huntington’s disease (HD), aprogressive neurodegenerative disease resulting in degeneration of striatal neurons in the brain.However, how impaired epigenetic regulation leads to transcriptional dysregulation in HD is unclear.Here, we investigated enhancer RNAs (eRNAs), a class of long non-coding RNAs transcribed fromactive enhancers. We found that eRNAs are expressed from many enhancers of mouse striatum andshowed that a subset of those eRNAs are deregulated in HD vs control mouse striatum. Enhancerregions producing eRNAs decreased in HD mouse striatum were associated with genes involved instriatal neuron identity. Consistently, they were enriched in striatal super-enhancers. Moreover,decreased eRNA expression in HD mouse striatum correlated with down-regulation of associatedgenes. Additionally, a significant number of RNA Polymerase II (RNAPII) binding sites were lost withinenhancers associated with decreased eRNAs in HD vs control mouse striatum. Together, this indicatesthat loss of RNAPII at HD mouse enhancers contributes to reduced transcription of eRNAs, resultingin down-regulation of target genes. Thus, our data support the view that eRNA dysregulation in HDstriatum is a key mechanism leading to altered transcription of striatal neuron identity genes, throughreduced recruitment of RNAPII at super-enhancer
    corecore