959 research outputs found

    Estimating sheet flow velocities using quinine as a fluorescent tracer: bare, mulched, vegetated and paved surfaces

    Get PDF
    When direct flow velocity measurements are not feasible, the use of tracers can be a valuable tool. In the present study, both laboratory and field experiments were conducted to evaluate the applicability of quinine as a fluorescent tracer for estimating mean sheet flow velocities in different ambient light and surface morphology conditions. Quinine excels in low-light conditions when exposed to UVA light. This tracer was compared with dye and thermal tracers, all in liquid form. In these tracing techniques the tracers were injected into the flow, after which surface velocity was estimated by tracking the leading edge of the tracer plumes and applying a correction factor to calculate the mean velocity (in a water column). The visibility of the tracers was evaluated by measuring the relative luminance and contrast ratio of the quinine and dye tracer plumes. Results show that the quinine tracer can be used to estimate sheet flow velocities over a wide variety of soil and urban surfaces; it has better visibility in comparison to the dye tracer but, in some conditions, lower visibility than the thermal tracer. Although quinine is invisible under bright ambient light conditions, this tracer technique requires low-cost experimental setup and is useful in low-light conditions (e.g., night; twilight; shielded environments).info:eu-repo/semantics/publishedVersio

    Using quinine as a fluorescent tracer to estimate overland flow velocities on bare soil: Proof of concept under controlled laboratory conditions

    Get PDF
    This study presents a tracer technique based on the fluorescent properties of quinine to help on the visualization of shallow flows and allow a quantitative measurement of overland flow velocities. Laboratory experiments were conducted to compare the traditional dye tracer and thermal tracer techniques with this novel fluorescent (quinine) tracer by injecting a quinine solution and the other tracers into shallow flowing surface water. The leading-edge tracer velocities, estimated using videos of the experiments with the quinine tracer were compared with the velocities obtained by using thermograms and real imaging videos of the dye tracers. The results show that the quinine tracer can be used to estimate both overland and rill flow velocities, since measurements are similar to those resulting from using other commonly used tracers. The main advantage of using the quinine tracer is the higher visibility of the injected tracer under ultraviolet A (UVA) light for low luminosity conditions. In addition, smaller amounts of quinine tracer are needed than for dye tracers, which lead to smaller disturbances in the flow. It requires a simple experimental setup and is non-toxic to the environment.UIDB/04292/2020info:eu-repo/semantics/publishedVersio

    Production and characterization of collagenase by Penicillium sp. UCP 1286 isolated from Caatinga soil

    Get PDF
    A new Penicillium sp. strain isolated from the soil of Caatinga, a Brazilian Biome (UCP 1286) was selected for collagenase production. Fermentation system allowing obtention of collagenolytic activity about 2.7 times higher than existing data, with the highest values of collagenolytic and specific activity (379.80 U/mL, 1460.77 U/mg, respectively), after 126 hours. Applying a factorial design, enzyme production was increased by about 65% compared to the preliminary results. The factorial design demonstrated the existence of two factors with statistical significance on the production of the enzyme: pH and temperature, both with negative effects. Enzyme was found to be more active at pH 9.0 and 37 °C, and also to be very stable in comparison with the collagenase produced by other microorganisms. The enzyme seems to belong to collagenolytic serine proteases family. Concerning the substrate specificity, it was observed that the highest enzyme activity corresponds to azocoll, there was no relevant activity on azocasein and the enzyme showed to be more specific to type V collagen and gelatin than the commercial colagenase produced by Clostridium histolyticum. Major band observed at electrophoresis was approximately 37 kDa. Zymogram analysis confirmed the collagenolytic activity. All data indicates this enzyme as promising biotechnology product.This work was supported by Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) (IBPG-0137-2.08/12) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Sara Silvério also acknowledges her post-doc grant (SFRH/BPD/88584/2012) from FCT (Fundação para a Ciência e a Tecnologia), Portugal

    MnO2-Ir Nanowires: Combining Ultrasmall Nanoparticle Sizes, O-Vacancies, and Low Noble-Metal Loading with Improved Activities towards the Oxygen Reduction Reaction

    Get PDF
    "Although clean energy generation utilizing the Oxygen Reduction Reaction (ORR) can be considered a promising strategy, this approach remains challenging by the dependence on high loadings of noble metals, mainly Platinum (Pt). Therefore, efforts have been directed to develop new and efficient electrocatalysts that could decrease the Pt content (e.g., by nanotechnology tools or alloying) or replace them completely in these systems. The present investigation shows that high catalytic activity can be reached towards the ORR by employing 1.8 ± 0.7 nm Ir nanoparticles (NPs) deposited onto MnO2 nanowires surface under low Ir loadings (1.2 wt.%). Interestingly, we observed that the MnO2 -Ir nanohybrid presented high catalytic activity for the ORR close to commercial Pt/C (20.0 wt.% of Pt), indicating that it could obtain efficient performance using a simple synthetic procedure. The MnO2 -Ir electrocatalyst also showed improved stability relative to commercial Pt/C, in which only a slight activity loss was observed after 50 reaction cycles. Considering our findings, the superior performance delivered by the MnO2 -Ir nanohybrid may be related to (i) the significant concentration of reduced Mn3+ species, leading to increased concentration of oxygen vacancies at its surface; (ii) the presence of strong metal-support interactions (SMSI), in which the electronic effect between MnOx and Ir may enhance the ORR process; and (iii) the unique structure comprised by Ir ultrasmall sizes at the nanowire surface that enable the exposure of high energy surface/facets, high surface-to-volume ratios, and their uniform dispersion.

    A fractional dispersion model for overland solute transport

    Get PDF
    An edited version of this paper was published by AGU. Copyright 2006 American Geophysical Union.Using the kinematic-wave overland flow equation and a fractional dispersion-advection equation, a process-oriented, physically-based model is developed for overland solute transport. Two scenarios, one consisting of downslope and the other of upslope rainstorm movements, are considered for numerical computations. Under these conditions, the hydrograph displays a long-tailed distribution due to the variation in flow velocity in both time and distance. The solute transport exhibits a complex behavior. Pollutographs are characterized by a steep rising limb, with a peak, and a long, stretched receding limb; whereas the solute concentration distributions feature a rapid receding limb followed by a long stretched rising limb. Downslope moving storms cause much higher peak in both hydrographs and pollutographs than do upslope moving storms. Both hydrographs and the pollutographs predicted by the fractional dispersion model are in good agreement with the data measured experimentally using a soil flume and a moving rainfall simulator

    Penicillium crustosum as a potential OTA producer - new insights from whole - genome sequencing of strain MUM 16.125

    Get PDF
    Ochratoxin A (OTA) is a well-studied mycotoxin that poses severe health risks. OTA is mainly produced by Aspergillus and Penicillium species associated with food spoilage and it is present in a wide diversity of food and feed products. Recent studies have reported the presence of OTA in food matrices where known OTA producers are not present1,2. For that reason, other species such as P. crustosum are now being considered. A recent study using comparative genomic analysis3 clarified the OTA biosynthetic gene cluster composition. In order to gain insight into the secondary metabolism of P. crustosum, this study aimed to sequence and explore the complete genome of strain MUM 16.125. This strain was isolated from cheese rind sample contaminated with OTA in which no known OTA producers were present1. The genome assembly comprises 199 contigs with a total length of 30.95 Mb and contains 10975 predicted protein-coding genes. In total, 109 gene clusters potentially related with secondary metabolism were identified, including putative gene clusters for penitrem, clavaric acid or naphthopyrones biosynthesis. Nevertheless, no evidence of an OTA biosynthetic gene cluster was found. A total of 83 complete and 49 partial protein sequences from published OTA biosynthetic genes from 11 Aspergillus and 3 Penicillium species were queried against the predicted P. crustosum proteins. Only 3 strong matches were found (to a short partial P. verrucosum PKS and 2 P. thymicola chloroperoxidases) but matches to complete key genes were absent. Considering these findings, it appears that strain MUM 16.125 lacks the most common genetic pathway to produce OTA, providing important information relevant to understand the role of P. crustosum as putative OTA producer. Nevertheless, the additional secondary metabolism gene clusters found (such as penitrem, clavaric acid or naphthopyrones) highlight the potential of this strain for metabolite production, including other mycotoxins or compounds with antioxidant, anticancer or antibiotic properties.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of CEB (UID/BIO/04469/2019) and iBiMED (UIDB/04501/2020) units; and by CANCYL (POCI-01-0145-FEDER-031849) and GenomePT (POCI-01-0145-FEDER-022184) projectsinfo:eu-repo/semantics/publishedVersio

    MicroRNA deregulation and chemotaxis and phagocytosis impairment in Alzheimer's disease

    Get PDF
    AbstractIntroductionMononuclear phagocytes play a critical role during Alzheimer's disease (AD) pathogenesis due to their contribution to innate immune responses and amyloid beta (Aβ) clearance mechanisms.MethodsBlood-derived monocytes (BDMs) and monocyte-derived macrophages (MDMs) were isolated from blood of AD, mild cognitive impairment (MCI) patients, and age-matched healthy controls for molecular and phenotypic comparisons.ResultsThe chemokine/chemokine receptor CCL2/CCR2 axis was impaired in BDMs from AD and MCI patients, causing a deficit in cell migration. Changes were also observed in MDM-mediated phagocytosis of Aβ fibrils, correlating with alterations in the expression and processing of the triggering receptor expressed on myeloid cells 2 (TREM2). Finally, immune-related microRNAs (miRNAs), including miR-155, -154, -200b, -27b, and -128, were found to be differentially expressed in these cells.DiscussionThis work provides evidence that chemotaxis and phagocytosis, two crucial innate immune functions, are impaired in AD and MCI patients. Correlations with miRNA levels suggest an epigenetic contribution to systemic immune dysfunction in AD

    Potential anti-diabetic properties of Merlot grape pomace extract: an in vitro, in silico and in vivo study of α-amylase and α-glucosidase inhibition

    Get PDF
    A practical approach to control glycemia in diabetes is to use plant natural products that delay hydrolysis of complex sugars and promote the diminution of the release of glucosyl units into the blood plasma. Polyphenolics have been described as being effective in inhibiting amylases and α-glucosidases. Grape pomace is an important sub product of the wine industry, still rich in many compounds such as polyphenolics. In this context, the purpose of this study was to search for possible effects of a grape pomace extract on salivary and pancreatic α-amylases and α-glucosidase, as well as on intestinal glucose absorption. The Merlot grape pomace extract (MGPE) was prepared using a hydroalcoholic mixture (40% ethanol + 60% water). In vitro inhibition was quantified using potato starch (for amylases) and maltose (for α-glucosidase) as substrates. In vivo inhibition was evaluated by running starch and maltose tolerance tests in rats with or without administration of MGPE. Ranking of the extract compounds for its affinity to the α-amylases was accomplished by computer simulations using three different programs. Both α-amylases, pancreatic and salivary, were inhibited by the MGPE. No inhibition on α-glucosidase, however, was detected. The IC50 values were 90 ± 10 μg/mL and 143 ± 15 μg/mL for salivary and pancreatic amylases, respectively. Kinetically this inhibition showed a complex pattern, with multiple binding of the extract constituents to the enzymes. Furthermore, the in silico docking simulations indicated that several phenolic substances, e.g., peonidin-3-O-acetylglucoside, quercetin-3-O-glucuronide and isorhamnetin-3-O-glucoside, besides catechin, were the most likely polyphenols responsible for the α-amylase inhibition caused by MGPE. The hyperglycemic burst, an usual phenomenon that follows starch administration, was substantially inhibited by the MGPE. Our results suggest that the MGPE can be adequate for maintaining normal blood levels after food ingestion.The authors wish to thank to the Fundação Araucária (Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), Cesumar Institute of Science Technology and Innovation (ICETI, Brazil), and FEDER-Interreg España-Portugal for their financial help.info:eu-repo/semantics/publishedVersio

    Drug targeting of inflammatory bowel diseases by biomolecules

    Get PDF
    Inflammatory bowel disease (IBD) is a group of disabling, destructive and incurable immune-mediated inflammatory diseases comprising Crohn's disease (CD) and ulcerative colitis (UC), disorders that are highly prevalent worldwide and demand a large investment in healthcare. A persistent inflammatory state enables the dysfunction and destruction of healthy tissue, hindering the initiation and endurance of wound healing. Current treatments are ineffective at counteracting disease progression. Further, increased risk of serious side effects, other comorbidities and/or opportunistic infections highlight the need for effective treatment options. Gut microbiota, the key to preserving a healthy state, may, alternatively, increase a patient's susceptibility to IBD onset and development given a relevant bacterial dysbiosis. Hence, the main goal of this review is to showcase the main conventional and emerging therapies for IBD, including microbiota-inspired untargeted and targeted approaches (such as phage therapy) to infection control. Special recognition is given to existing targeted strategies with biologics (via monoclonal antibodies, small molecules and nucleic acids) and stimuli-responsive (pH-, enzyme- and reactive oxygen species-triggered release), polymer-based nanomedicine that is specifically directed towards the regulation of inflammation overload (with some nanosystems additionally functionalized with carbohydrates or peptides directed towards M1-macrophages). The overall goal is to restore gut balance and decrease IBD's societal impact.Portuguese Foundation for Science and Technology (FCT), FEDER funds by means of Portugal 2020 Competitive Factors Operational Program (POCI) and the Portuguese Government (OE) for funding the project PEPTEX with reference PTDC/CTMTEX/28074/2017 (POCI-01-0145-FEDER-028074). Using national funds through FCT/MCTES (Ministry of Science, Technology and Higher Education) the authors are also grateful for the funding associated with the project UID/CTM/00264/2020 of Centre for Textile Science and Technology (2C2T), and UIDB/QUI/50006/2020 of Associated Laboratory for Green Chemistry-Clean Technologies and Processes (LAQV). SCL acknowledges funding from FCT/MEC (Ministry of Education and Science; CEECIND/01620/2017), CN is thankful to FCT for the investigator Grant (IF/00293/2015) and JMD thanks FCT PhD grant 2020.07387.B
    corecore