8,279 research outputs found
Solving simple quaternionic differential equations
The renewed interest in investigating quaternionic quantum mechanics, in
particular tunneling effects, and the recent results on quaternionic
differential operators motivate the study of resolution methods for
quaternionic differential equations. In this paper, by using the real matrix
representation of left/right acting quaternionic operators, we prove existence
and uniqueness for quaternionic initial value problems, discuss the reduction
of order for quaternionic homogeneous differential equations and extend to the
non-commutative case the method of variation of parameters. We also show that
the standard Wronskian cannot uniquely be extended to the quaternionic case.
Nevertheless, the absolute value of the complex Wronskian admits a
non-commutative extension for quaternionic functions of one real variable.
Linear dependence and independence of solutions of homogeneous (right) H-linear
differential equations is then related to this new functional. Our discussion
is, for simplicity, presented for quaternionic second order differential
equations. This involves no loss of generality. Definitions and results can be
readily extended to the n-order case.Comment: 9 pages, AMS-Te
Right eigenvalue equation in quaternionic quantum mechanics
We study the right eigenvalue equation for quaternionic and complex linear
matrix operators defined in n-dimensional quaternionic vector spaces. For
quaternionic linear operators the eigenvalue spectrum consists of n complex
values. For these operators we give a necessary and sufficient condition for
the diagonalization of their quaternionic matrix representations. Our
discussion is also extended to complex linear operators, whose spectrum is
characterized by 2n complex eigenvalues. We show that a consistent analysis of
the eigenvalue problem for complex linear operators requires the choice of a
complex geometry in defining inner products. Finally, we introduce some
examples of the left eigenvalue equations and highlight the main difficulties
in their solution.Comment: 24 pages, AMS-Te
Quaternionic potentials in non-relativistic quantum mechanics
We discuss the Schrodinger equation in presence of quaternionic potentials.
The study is performed analytically as long as it proves possible, when not, we
resort to numerical calculations. The results obtained could be useful to
investigate an underlying quaternionic quantum dynamics in particle physics.
Experimental tests and proposals to observe quaternionic quantum effects by
neutron interferometry are briefly reviewed.Comment: 21 pages, 16 figures (ps), AMS-Te
Potential Scattering in Dirac Field Theory
We develop the potential scattering of a spinor within the context of
perturbation field theory. As an application, we reproduce, up to second order
in the potential, the diffusion results for a potential barrier of quantum
mechanics. An immediate consequence is a simple generalization to arbitrary
potential forms, a feature not possible in quantum mechanics.Comment: 7 page
Quaternionic eigenvalue problem
We discuss the (right) eigenvalue equation for , and
linear quaternionic operators. The possibility to introduce an
isomorphism between these operators and real/complex matrices allows to
translate the quaternionic problem into an {\em equivalent} real or complex
counterpart. Interesting applications are found in solving differential
equations within quaternionic formulations of quantum mechanics.Comment: 13 pages, AMS-Te
Relativistic tunneling through opaque barriers
We propose an analytical study of relativistic tunneling through opaque
barriers. We obtain a closed formula for the phase time. This formula is in
excellent agreement with the numerical simulations and corrects the standard
formula obtained by the stationary phase method. An important result is found
when the upper limit of the incoming energy distribution coincides with the
upper limit of the tunneling zone. In this case, the phase time is proportional
to the barrier width.Comment: 11 pages, 3 figure
Dirac Equation Studies in the Tunnelling Energy Zone
We investigate the tunnelling zone V0 < E < V0+m for a one-dimensional
potential within the Dirac equation. We find the appearance of superluminal
transit times akin to the Hartman effect.Comment: 12 pages, 4 figure
Quaternionic Electroweak Theory and CKM Matrix
We find in our quaternionic version of the electroweak theory an apparently
hopeless problem: In going from complex to quaternions, the calculation of the
real-valued parameters of the CKM matrix drastically changes. We aim to explain
this quaternionic puzzle.Comment: 8, Revtex, Int. J. Theor. Phys. (to be published
Sea waves transport of inertial micro-plastics: Mathematical model and applications
Plastic pollution in seas and oceans has recently been recognized as one of the most impacting threats for the environment, and the increasing number of scientific studies proves that this is an issue of primary concern. Being able to predict plastic paths and concentrations within the sea is therefore fundamental to properly face this challenge. In the present work, we evaluated the effects of sea waves on inertial micro-plastics dynamics. We hypothesized a stationary input number of particles in a given control volume below the sea surface, solving their trajectories and distributions under a second-order regular wave. We developed an exhaustive group of datasets, spanning the most plausible values for particles densities and diameters and wave characteristics, with a specific focus on the Mediterranean Sea. Results show how the particles inertia significantly affects the total transport of such debris by waves
- …