
Solving simple quaternionic differential equations
Stefano De Leo and Gisele C. Ducati 

 
Citation: Journal of Mathematical Physics 44, 2224 (2003); doi: 10.1063/1.1563735 
View online: http://dx.doi.org/10.1063/1.1563735 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/44/5?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Boubaker polynomial approach for solving high-order linear differential-difference equations 
AIP Conf. Proc. 1493, 26 (2012); 10.1063/1.4765464 
 
Wave front-ray synthesis for solving the multidimensional quantum Hamilton-Jacobi equation 
J. Chem. Phys. 135, 074102 (2011); 10.1063/1.3624729 
 
Stability of Central Finite Difference Schemes on Non–Uniform Grids for 1D Partial Differential Equations with
Variable Coefficients 
AIP Conf. Proc. 1281, 1991 (2010); 10.1063/1.3498327 
 
An algorithm for quaternionic linear equations in quaternionic quantum theory 
J. Math. Phys. 45, 4218 (2004); 10.1063/1.1794368 
 
Quaternionic differential operators 
J. Math. Phys. 42, 2236 (2001); 10.1063/1.1360195 

 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.106.190.134 On: Fri, 01 Aug 2014 12:13:34

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296729477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scitation.aip.org/content/aip/journal/jmp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1920586300/x01/AIP-PT/CiSE_JMPArticleDL_073014/Awareness_LibraryF.jpg/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=Stefano+De+Leo&option1=author
http://scitation.aip.org/search?value1=Gisele+C.+Ducati&option1=author
http://scitation.aip.org/content/aip/journal/jmp?ver=pdfcov
http://dx.doi.org/10.1063/1.1563735
http://scitation.aip.org/content/aip/journal/jmp/44/5?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4765464?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/135/7/10.1063/1.3624729?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.3498327?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.3498327?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/45/11/10.1063/1.1794368?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/42/5/10.1063/1.1360195?ver=pdfcov


f real
ts by

shall,
to the

he left

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 5 MAY 2003

 This article is copyrig
Solving simple quaternionic differential equations
Stefano De Leoa)

Department of Applied Mathematics, State University of Campinas,
SP 13083-970, Campinas, Brazil

Gisele C. Ducatib)

Department of Mathematics, University of Parana, PR 81531-970, Curitiba, Brazil

~Received 10 December 2002; accepted 27 January 2003!

The renewed interest in investigating quaternionic quantum mechanics, in particu-
lar tunneling effects, and the recent results on quaternionic differential operators
motivate the study of resolution methods for quaternionic differential equations. In
this paper, by using the real matrix representation of left/right acting quaternionic
operators, we prove existence and uniqueness for quaternionic initial value prob-
lems, discuss the reduction of order for quaternionic homogeneous differential
equations and extend to the noncommutative case the method of variation of pa-
rameters. We also show that the standard Wronskian cannot uniquely be extended
to the quaternionic case. Nevertheless, theabsolute valueof the complex Wronsk-
ian admits anoncommutativeextension for quaternionic functions of one real vari-
able. Linear dependence and independence of solutions of homogeneous~right!
H-linear differential equations is then related to thisnewfunctional. Our discussion
is, for simplicity, presented for quaternionic second order differential equations.
This involves no loss of generality. Definitions and results can be readily extended
to then-order case. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1563735#

I. INTRODUCTION

Let R, C[span$1,i %, andH[span$1,i , j ,k% be the real, complex, and quaternionic field,3

i 25 j 25k25 i jk 521

and

F : R→R

be the set of real functions of real variable. Through the paper, quaternionic functions o
variable,C(x)PH ^ F, will be denoted by greek letters and constant quaternionic coefficien
Roman letters. To shorten notation the prime and double prime in the quaternionic functions
respectively, indicate the first and second derivative of quaternionic functions with respect
real variablex,

C8ª
dC

dx
and C9ª

d2C

dx2 .

Due to the noncommutative nature of quaternions, it is convenient to distinguish between t
and right action of the quaternionic imaginary unitsi , j , andk by introducing the operatorsLq and
Rp whose action on quaternionic functionsC is given by

a!Electronic mail: deleo@ime.unicamp.br
b!Electronic mail: ducati@mat.ufpr.br
22240022-2488/2003/44(5)/2224/10/$20.00 © 2003 American Institute of Physics
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LqC5q C and RpC5C p, ~1!

These~left/right acting! quaternionic operators satisfy

Lq Lp5Lqp , Rq Rp5Rpq , and @ Lq , Rp #50, ~2!

and admit for

q5q01 i q11 j q21k q3 , p5p01 i p11 j p21k p3 , C5C01 i C11 j C21k C3 ,

the following real matrix representation4–6

Lq↔S q0 2q1 2q2 2q3

q1 q0 2q3 q2

q2 q3 q0 2q1

q3 2q2 q1 q0

D , Rp↔S p0 2p1 2p2 2p3

p1 p0 p3 2p2

p2 2p3 p0 p1

p3 p2 2p1 p0

D , C↔F C0

C1

C2

C3

GPR4
^ F.

~3!

II. EXISTENCE AND UNIQUENESS

In this section we discuss existence and uniqueness for the quaternionic initial value pr

C95a C81b C1r, C~x0!5 f , C8~x0!5g, ~4!

with a(x), b(x), r(x)PH^ F, x0PI :(x2 ,x1) and f ,gPH.
Theorem 1: Let a, b, andr in Eq. ~4! be continuous functions ofx on an open intervalI

containing the pointx5x0 . Then, the initial value problem~4! has a solutionC on this interval
and this solution is unique.

Proof: By using the real matrix representation~3!, we can immediately rewrite the quate
nionic initial value problem~4! in the following vector form:

F C0

C1

C2

C3

G 9

5S a0 2a1 2a2 2a3

a1 a0 2a3 a2

a2 a3 a0 2a1

a3 2a2 a1 a0

D F C0

C1

C2

C3

G 8

1S b0 2b1 2b2 2b3

b1 b0 2b3 b2

b2 b3 b0 2b1

b3 2b2 b1 b0

D F C0

C1

C2

C3

G1F r0

r1

r2

r3

G
~5!

with

F C0~x0!

C1~x0!

C2~x0!

C3~x0!

G5F f 0

f 1

f 2

f 3

G and F C08~x0!

C18~x0!

C2~x0!

C38~x0!

G5F g0

g1

g2

g3

G . ~6!

Equation ~5! represents a~nonhomogeneous! linear system witham ,bm ,rmPR^ F, wherem
50,1,2,3. These functions are~see hypothesis of Theorem 1! continuous~real! functions ofx on
an open intervalI containing the pointx5x0 . Then, by a well-known theorem of analysis, see,
example, Ref. 7, the linear system~5! has a solution

F C0

C1

C2

C3

GPR4
^ F
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on this interval satisfying~6!, and this solution is unique. j

III. LINEAR INDEPENDENCE AND DEPENDENCE OF SOLUTIONS

Let us now analyze the linear independence and dependence of the solutions of secon
homogeneous differential equations

C95a C81b C, ~7!

wherea andb are~quaternionic! continuous functions ofx on an open intervalI . Equation~7! is
linear overH from the right. Consequently, ifw is a solution of Eq.~7! only the function obtained
by right multiplication by constant quaternionic coefficients,w u, still represent a solution of suc
an equation. The general solution of Eq.~7! is given in terms of a pair of linearly independe
solutionsw andj by

C5w u1j v, ~8!

wherew5w01 i w11 j w21k w3 , j5j01 i j11 j j21k j3PH ^ F, andu, vPH.
In the standard complex theory (w5w01 i w1 and j5j01 i j1PC^ F) a useful criterion to

establish linear independence and dependence of two solutions of homogeneous secon
differential equation, uses the concept ofWronskianof these solutions defined by

W5w j82w8 j, WPC^ F. ~9!

This definition cannot be extended to quaternionic functions. Let us consider two linearly d
dent solutions of Eq.~7!,

j5w q, w, jPH^ F, qPH. ~10!

By substitutingj5w q andj85w8 q in the Wronskian~9!, we find

w j82w8 j5w w8 q2w8 w qÞ0.

Observe that a quaternionic function and its first derivative do not, in general, commute. Thu
definition ~9!, and all its possible factor combinations cannot be extended to the quaternionic

Let us now use the linear dependence condition~10! to investigate the possibility to define
quaternionic functional which extends~in a nontrivial way! the standard~complex! Wronskianto
the noncommutative case. From Eq.~10! and its derivative, we get

q5w21j5~w8!21j8,

wherew21[1/w and (w8)21[1/w8. Consequently, for linearly dependent quaternionic solutio
we have

j82w8 w21 j50. ~11!

To recover, in the complex limit, the standard definition~9! we multiply j82w8w21j by w. Due
to the noncommutative nature of quaternions, we have to consider the following possibilitie

WL5w ~ j82w8 w21j ! and WR5~ j82w8 w21j ! w. ~12!

Obviously two othersimilar definitions can be obtained byw↔j,

W̃L52j ~ w82j8 j21w !52WL@w↔j# and W̃R52~ w82j8 j21w ! j52WR@w↔j#.
~13!
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The quaternionic functionals~12! and ~13!, which give in the complex limit the standard defin
tion, extend a first important property ofWronskian. Two solutions of Eq.~7! are linearly depen-
dent onI if WL(R) @W̃L(R)# is zero onI . To avoid ambiguity in defining theWronskian, we shall
introduce a~real! functional,

uWu25uWLu25uWRu25uW̃Lu25uW̃Ru2,

which extends thesquared absolute valueof the Wronskian. This uniquefunctional is

uWu25uwu2 uj8u21uj u2 uw8u22w8 wc j jc82j8 jc w wc8 PR^ F, ~14!

wherewc5w02 i w12 j w22k w3 andjc5j02 i j12 j j22k j3 are, respectively, the quaternion
conjugate functions ofw andj.

Observe that Eq.~14! can also be obtained as an application of the Dieudonne´ theory of
quaternionic determinants.8–12 In fact,

uWu25@Det~M !#2
ªdet~M M 1!, ~15!

where

M5S w j

w8 j8
D .

Theorem 2: Let a andb in Eq. ~7! be continuous functions ofx on an open intervalI : (a,b).
Then, two solutionsw andj of Eq. ~7! on I are linearly dependent onI if and only if theabsolute
valueof the Wronskian,uWu, is zero at somex0 in I .

The proof will be divided into three steps:

~a! If w andj are linearly dependent onI then uWu50.
~b! If uWu50 at somex0 in I then uWu50 on I .
~c! If uWu50 at somex0 in I thenw andj are linearly dependent onI .

Proof (a): If w andj are linearly dependent onI , then Eq.~10! holds onI . From Eq.~10!, we
get

uWu25uwu2 uw8u2 uqu21uwu2 uw8u2 uqu22w8wcw uqu2 wc82w8 uqu2 wcwwc850,

then uWu50.
Proof (b): Let us consider Eq.~14!. By calculating the first derivative of the left-hand- an

right-hand-side terms, we obtain

2 uWu uWu85w8wcj8jc81wwc8j8jc81wwcC29jc81wwcj8jc91j8jcw8wc81jjc8w8wc8

1jjcC19wc81jjcw8wc92C19wcjjc82w8wc8jjc82w8wcj8jc82w8wcjjc9

2C29jcwwc82j8jc8wwc82j8jcw8wc82j8jcwwc9

5uwu2~C29jc81j8jc9!1uju2~C19wc81w8wc9!2C19wcjjc82w8wcjjc9

2C29jcwwc82j8jcwwc9

5uwu2~a uj8u21b jjc81h.c.!1uju2~a uw8u21b wwc81h.c.!

2@~a w8wc1b uwu2! jjc81h.c.#2@~a j8jc1b uju2! wwc81h.c.#

52 Re@a# ~ uwu2 uj8u21uju2 uw8u22w8wcjjc82j8jcwwc8!52 Re@a# uWu2.
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By a simple integration, we find

uW~x!u5expF E
x0

x

Re@a~y!# dyG uW~x0!u. ~16!

This proves the statement~b!.
Proof (c): From the statement~b!, we have

uW~x0!u50 ⇒ uW~x!u50, xPI .

This implies that the quaternionic matrix

S w j

w8 j8
D

is not invertible onI .12 Hence the linear system

w q11j q250, w8 q11j8 q250,

in the unknownsq1,2PH, has a solution (q1 ,q2) whereq1 andq2 are not both zero. Recalling tha
w andj are linearly independent on an intervalI if

w~x! q11j~x! q250 ⇒ q15q250,

the fact thatq1 andq2 are not both zero guarantees the linear dependence ofw andj on I . j

Example 1:Show thatw5exp@2ix# andj5exp@(i2j)x# form a basis of solutions of

C91 j C81~12k! C50, ~17!

on any interval.
Solution:Substitution shows that they are solutions,

@211 j ~2 i !112k# exp@2 ix#50,

@221 j ~ i 2 j !112k# exp@~ i 2 j !x#50,

and linear independence follows from Theorem 2, since

uWu5Au i 2 j u21u i u21 i ~ j 2 i !2~ i 2 j !i 5A5.

IV. HOMOGENEOUS EQUATIONS: REDUCTION OF ORDER

Let w be solution of Eq.~7! on some intervalI . Looking for a solution in the form

j5w t

and substitutingj and its derivatives

j85w8 t1w t8 and j95w9 t12 w8 t81w t9

into Eq. ~7!, we obtain

t95~w21a w22 w21w8! t8. ~18!
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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It is important to observe that, for quaternionic functions, wecannotgive a formal solution of the
previous equation. Only in particular cases, Eq.~18! can be immediately integrated. For examp
for homogeneous second order equations with constant coefficients,

a~x!→aPH and b~x!→bPH,

at least one solution is in the form of a quaternionic exponential,w5exp@qx#, and consequently
Eq. ~18! reduces to

wt95~a22 q! wt8. ~19!

Let us introduce the quaternionic function

s5wt8.

Observing that

s85w8t81wt95q wt81wt9,

Eq. ~19! can be rewritten as follows:

s85~a2q!s. ~20!

This equation can be immediately integrated, its solution reads

s5exp@~a2q!x#.

Thus, the second solution of the homogeneous second order differential equation with co
coefficients is given by

j5exp@qx#E exp@2qx# exp@~a2q!x# dx. ~21!

In the complex limit (a,qPC) we find the well-known resultsj}exp@(a2q)x# if 2qÞa and j
}x exp@qx# if 2q5a. In the quaternionic case (a,qPC), the integral which appears in~21! must
be treated with care. The solution of this integral will give interesting information about
second solution of quaternionic differential equations with constant coefficients when the a
ated characteristic quadratic equation has a unique solution. To solve the integral in Eq.~21!, we
start by observing that

@eux evx#85u eux evx1eux evx v5~Lu1Rv! eux evx.

If the operatorLu1Rv is invertible the previous equality implies

E eux evx dx5~Lu1Rv!21 eux evx.

This result guarantees that, if the operatorL2q2Ra2q is invertible the second solution can b
written in the form

j5exp@qx# ~L2q1Ra2q!21 exp@2qx# exp@~a2q!x#

5exp@qx# ~Ra2q2Lq!21 exp@2qx# exp@~a2q!x#. ~22!

If the operatorL2q1Ra2q is not invertible, we need to solve the integral which appears in~21! by
using the polar decomposition of quaternions~see example 3! and a term linearly dependent onx
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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will appear. In the complex case (a,qPC), the operatorL2q1Ra2q is not invertible if and only
if 2q5a. In the quaternionic (a,qPH), the condition 2qÞa does not guarantee that the opera
is invertible.

Example 2:Knowing thatw5exp@2ix# is solution of the homogeneous second order equa
~17!, find ~by using the method of reduction of order! a second independent solution,j.

Solution:We haveq52 i anda52 j . To use Eq.~22! we have to prove that the operator

L2q1Ra2q5Li1Ri 2 j

is invertible. A simple algebraic calculation shows that

~Li2Ri 2 j !~Li1Ri 2 j !51.

Thus,

~L2q1Ra2q!215Li2Ri 2 j .

We are now ready to calculatej from Eq. ~22!,

j5exp@2 ix# ~Li2Ri 2 j ! exp@ ix# exp@~ i 2 j !x#5~Li2Ri 2 j ! exp@~ i 2 j !x#5exp@~ i 2 j !x# j .

Due to theH linearity ~from the right! of Eq. ~17! the right factorj can be ignored recovering th
solution of example 1.

Example 3:Inspection shows that

C91 i C81
k

2
50 ~23!

hasw5exp$2 @(i1j)/2# x% as a first solution. Find the second linear independent solution.
Solution: We haveq52 ( i 1 j )/2 anda52 i . In this case, the operator

L2q1Ra2q5L ~ i 1 j !/21R~ j 2 i !/2

is not invertible. This is easily seen by using, for example, the real matrix representation~3!. Thus,
the integral in Eq.~21! cannot be expressed in terms of an exponential product. Let us expl
calculatej from Eq. ~21!. We find

j5expF2
i 1 j

2
xG E expF i 1 j

2
xG expF j 2 i

2
xG dx

5expF2
i 1 j

2
xG E S cos

x

&
1

i 1 j

&
sin

x

&
D S cos

x

&
1

j 2 i

&
sin

x

&
D dx

5expF2
i 1 j

2
xG E $12k exp@2~ i 1 j !x#%

11k

2
dx.

Due to theH linearity ~from the right! of Eq. ~23! the right factor (11k)/2 can be removed. After
integration, we find

j5expF2
i 1 j

2
xG H x2k

i 1 j

2
exp@2~ i 1 j !x#J 5S x1

i 2 j

2 D expF2
i 1 j

2
xG .

Observe that the quaternionic factor (i 2 j )/2 appears on the left of the quaternionic exponen
and consequentlycannotbe removed. It is a fundamental part of the solution. Inspection sh
that
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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j5x expF2
i 1 j

2
xG

is not the solution of Eq.~23!.

V. NONHOMOGENEOUS EQUATIONS: VARIATION OF PARAMETERS

A general solution of the nonhomogeneous equation~4! is a solution of the form

C5Ch1Cp , ~24!

where

Ch5w q11j q2

is a general solution of the homogeneous equation~7! and Cp is any particular solution of~4!
containing no arbitrary constants. In this section we discuss the so-called method of varia
parameters to find a particular solution for quaternionic nonhomogeneous differential equa

A method to solve a homogeneous second order quaternionic differential equations
constant coefficients has been recently developed.2 Quaternionic differential equations with non
constant coefficients are under investigation. We suppose to know two independent solut
the homogeneous equation associated with Eq.~7!. We wish to investigate if the method o
variation of parameters still works in the quaternionic case.

The method of variation of parameters involves replacing the constantq1 andq2 by quater-
nionic functionsn1(x) andn2(x) to be determined so that the resulting function

Cp5w n11j n2

is a particular solution of Eq.~4!. By differentiatingCp we obtain

Cp85w8n11j8n21w n181j n28 .

The requirement thatCp satisfies Eq.~4! imposes onlyonecondition onn1 andn2 . Hence, we
can impose a second arbitrary condition, that is

w n181j n2850. ~25!

This reducesCp8 to the form

Cp85w8n11j8n2 .

By differentiating this function we have

Cp95w9n11w8n181j9n21j8n28 .

SubstitutingCp , Cp8 , andCp9 in Eq. ~4! we readily obtain

w8n181j8n285r. ~26!

Collecting Eq.~25! and Eq.~26!, we can construct the following matrix system:

S w j

w8 j8
D Fn18

n28
G5F0r G , ~27!

from which (uWuÞ0) we obtain
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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Fn18

n28
G5S w j

w8 j8
D 21F0r G5S @w2jj821w8#21 @w82j8j21w#21

@j2ww821j8#21 @j82w8w21j#21D F0r G . ~28!

Then,

n185@w82j8j21w#21r and n285@j82w8w21j#21r. ~29!

To find n1(x) andn2(x) we have to integrate the previous equations.
Example 4:Find a general solution of the nonhomogeneous quaternionic differential equ

C91 j C81~12k! C5 i x. ~30!

Solution:The solution of the associated homogeneous equation~see example 1! is

Ch5exp@2 ix# q11exp@2~ i 1 j !x# q2 .

The particular solution is

Cp5exp@2 ix# n11exp@2~ i 1 j !x# n2 .

Consequently, from Eqs.~29! we find

n185exp@ ix# x k and n2852exp@~ i 1 j !x# x k

which after integration give

n1~x!5~12 ix ! exp@ ix# k and n2~x!52 1
2 @12~ i 1 j !x# exp@~ i 1 j !x# k.

Finally

Cp5 1
2 @~ i 1 j ! x1k#.

A general solution of Eq.~23! is

C5exp@2 ix# q11exp@2~ i 1 j !x# q21 1
2 @~ i 1 j ! x1k#.

VI. CONCLUSIONS AND OUTLOOKS

The recent results on violations of quantum mechanics by quaternionic potentials1 and the
possibility to get a better understanding of CP-violation phenomena within a quaternionic fo
lation of physical theories1,13 stimulated the study of quaternionic differential operators.2 In this
paper, we have proved existence and uniqueness for quaternionic initial value problems and
simple quaternionic differential equations by discussing the reduction of order for quatern
homogeneous equations and by extending to the noncommutative case the method of vari
parameters and the definition of absolute value of the Wronskian functional.

In view of a more complete discussion of quantum dynamical systems using quater
wave packets, our next research~mathematical! interest will be the study of quaternionic integr
transforms. The quaternionic formulation of Fourier transforms could find an immediate
interesting application in the study of delay time modifications of wave packets scattered
quaternionic potential step.
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