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Solving simple quaternionic differential equations
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The renewed interest in investigating quaternionic quantum mechanics, in particu-
lar tunneling effects, and the recent results on quaternionic differential operators
motivate the study of resolution methods for quaternionic differential equations. In
this paper, by using the real matrix representation of left/right acting quaternionic
operators, we prove existence and uniqueness for quaternionic initial value prob-
lems, discuss the reduction of order for quaternionic homogeneous differential
equations and extend to the noncommutative case the method of variation of pa-
rameters. We also show that the standard Wronskian cannot uniquely be extended
to the quaternionic case. Nevertheless,ahsolute valuef the complex Wronsk-

ian admits anoncommutativextension for quaternionic functions of one real vari-
able. Linear dependence and independence of solutions of homogeigis
H-linear differential equations is then related to thesvfunctional. Our discussion

is, for simplicity, presented for quaternionic second order differential equations.
This involves no loss of generality. Definitions and results can be readily extended
to then-order case. ©2003 American Institute of Physics.

[DOI: 10.1063/1.1563735

I. INTRODUCTION
Let R, C=span{1,}, andll=span{1,,j,k} be the real, complex, and quaternionic fiéld,
i2=j?2=K?=ijk=—1
and
F:R—R

be the set of real functions of real variable. Through the paper, quaternionic functions of real
variable,¥ (x) e H ® F, will be denoted by greek letters and constant quaternionic coefficients by
Roman letters. To shorten notation the prime and double prime in the quaternionic functions shall,
respectively, indicate the first and second derivative of quaternionic functions with respect to the
real variablex,
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Due to the noncommutative nature of quaternions, it is convenient to distinguish between the left
and right action of the quaternionic imaginary unit§, andk by introducing the operatots; and
R, whose action on quaternionic functiodsis given by
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LaW=q¥ andR,¥=Vp, (1)
These(left/right acting quaternionic operators satisfy
LaLlp=Lgp, RgqRpy=Rpq, and[Lg4,R,]=0, (2
and admit for
q=dotidit+jdatkas, p=potipit+jpotkps, V=Wo+iWV+j¥,+kW¥s,
the following real matrix representatidh®
Qo 41 —02 —Qs Po —P1 —P2 —P3 v,
- - v
Ly 1 Mo ds 02 . Ry P1  Po P3 P2 RN \pl CRie F
d2  ds Qo —Q1 P2 —P3  Po P1 2
s —Q42 Qi do Pz P2 —P1 Po Vs
(€

II. EXISTENCE AND UNIQUENESS

In this section we discuss existence and uniqueness for the quaternionic initial value problem

V'=aW' +BV+p, WV(xg)=f, WV(xg)=g, (4)
with a(Xx), B(x), p(X) e H® F, xgel:(x_,x;) andf,ge H.

Theorem 1: Let «, B, andp in Eq. (4) be continuous functions of on an open interval
containing the poink=X,. Then, the initial value problerd) has a solutionV' on this interval
and this solution is unique.

Proof: By using the real matrix representatigd), we can immediately rewrite the quater-

nionic initial value problem(4) in the following vector form:

v, Gp —ap Tapz Tag v, Bo —Bi1 —B2 —B3 v, Po
V| [ a0 —az @ v, N B1 Bo —Bs B> v, N p1
v, ay az  ag —ay|| VY2 B2 Bz Bo —Bi|| Y2 p2
Vs as —apy a1 @ Vs Bz —B2 P11 Bo Vs P3
5
with

W(Xo) fo W(Xo) Jo

W¥1(Xo) fq W1(Xo) J1
= and = 6
W5(Xp) fa W5(Xo) J2 ©

W3(Xop) f3 W3(Xo) 93

Equation(5) represents dnonhomogeneouidinear system witha,, 8m,pme R® F, wherem
=0,1,2,3. These functions aftsee hypothesis of Theorem dontinuous(real functions ofx on

an open interval containing the poink=x,. Then, by a well-known theorem of analysis, see, for
example, Ref. 7, the linear systei®) has a solution

Vo
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LE
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on this interval satisfying6), and this solution is unique. |

IIl. LINEAR INDEPENDENCE AND DEPENDENCE OF SOLUTIONS

Let us now analyze the linear independence and dependence of the solutions of second order
homogeneous differential equations

V'=aV'+47, (7)

wherea and 8 are (quaternioni¢ continuous functions af on an open intervdl. Equation(7) is
linear overH from the right. Consequently, i is a solution of Eq(7) only the function obtained
by right multiplication by constant quaternionic coefficientsy, still represent a solution of such
an equation. The general solution of E@) is given in terms of a pair of linearly independent
solutionse and ¢ by

Y=¢pu+tév, (8)

wherep=g@o+i @1+] ot kes, E=&g+i &1+ étkézeH®F, andu, v e H.

In the standard complex theory € og+i ¢, and é=§&y+i1 &, e C® F) a useful criterion to
establish linear independence and dependence of two solutions of homogeneous second order
differential equation, uses the conceptWifonskianof these solutions defined by

W=pé&' —¢' & WelCaF. 9

This definition cannot be extended to quaternionic functions. Let us consider two linearly depen-
dent solutions of Eq(7),

E=¢q, ¢, éecH®F, qeH. (10
By substitutingé=¢ q and ¢’ = ¢’ q in the Wronskian(9), we find
eé'—9' é=09' d—¢' ¢q#0.

Observe that a quaternionic function and its first derivative do not, in general, commute. Thus, the
definition (9), and all its possible factor combinations cannot be extended to the quaternionic case.
Let us now use the linear dependence conditil) to investigate the possibility to define a
guaternionic functional which extends a nontrivial way the standardcompleX Wronskianto

the noncommutative case. From Eg0) and its derivative, we get

a=¢ &=(¢) ¢,

whereg 1=1/p and (¢’) "'=1/¢’. Consequently, for linearly dependent quaternionic solutions,
we have

&—¢ ¢ te=0. (12)

To recover, in the complex limit, the standard definiti® we multiply & — ¢’ ¢ & by ¢. Due
to the noncommutative nature of quaternions, we have to consider the following possibilities:

W= (&' —¢ ¢ 1) andWr=(&'—¢ ¢ 1¢) 0. (12)

Obviously two othersimilar definitions can be obtained hy— &,

Wo=—t(¢'—¢ ¢ l0)=-Wlp—g] andWe=—(¢'—¢ ¢ lg)é= Sl
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The quaternionic functional€l2) and (13), which give in the complex limit the standard defini-
tion, extend a first important property ¥fronskian Two solutions of Eq(7) are linearly depen-

dent onl if W (g, [VVL(R)] is zero onl. To avoid ambiguity in defining thg&/ronskian we shall
introduce a(real) functional,

|W|2= |WL|2: |WR|2: |\7VL|2:|\7VR|21
which extends thequared absolute valuef the Wronskian This uniquefunctional is
(WI=[@[?|&' 2+ |E[2¢"|*—¢" o £ &~ ¢ Eco @l eROF, (14
wherep.=¢o—i @1—j po—K ez andé.=&,—i &1—] &,—k & are, respectively, the quaternionic
conjugate functions op andé.

Observe that Eq(14) can also be obtained as an application of the Dieuddheery of
quaternionic determinants!? In fact,

|W|2=[Det(M)]?:=de{fM M ™), (15)
where
vl ¢ 6)
o &)

Theorem 2 Let « and B in Eq. (7) be continuous functions of on an open intervdl: (a,b).
Then, two solutiong and ¢ of Eq. (7) on| are linearly dependent dnif and only if theabsolute
value of the Wronskian|W|, is zero at some in I.

The proof will be divided into three steps:

(@ If ¢ andé are linearly dependent dnthen|W|=0.
(b) If |W|=0 at somexq in | then|W|=0 onl.
(c) If |W|=0 at somexq in | then¢ and ¢ are linearly dependent dn

Proof (a): If ¢ and£ are linearly dependent dn then Eq.(10) holds onl. From Eq.(10), we
get

(WI2=]|?]@'|? |al?+]|el? e |?[a]*— ¢  ece |al* et~ @' |a]? ecp@i=0,

then|W|=0.
Proof (b): Let us consider Eq(14). By calculating the first derivative of the left-hand- and
right-hand-side terms, we obtain

2IWI W' =¢"@cé' i+ @pé €+ oo Woet+ opcl €L+ E Ecp o+ EECQ ¢
FEEW TP+ €6 ol —V10cEé— @ 0~ ¢ 0c EC— ¢ pcbL
— Voo =& Elpp =& S ol — & Ecp ol
=[ @A (W5éc+E ED+|EH(Vpit o )~ Vipcké— ¢ @b
— Voo & Ecpeg
=lo|X(a|&'[*+ B Eé+he)+ e (ale [P+ B ogth.c)
—[(@ ¢ ot Blel?) E€cthcl—[(a g &+ BlE*) pecthe]
=2Rda] (ol [&'[P+ & ¢~ ¢’ pctéi— & o) =2 R ] |W|2.
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By a simple integration, we find

ool e [ Reatw 1o Wi i

This proves the statemefft).
Proof (c): From the statemer(b), we have

IW(x0)|=0 = |W(x)|=0, xel.

This implies that the quaternionic matrix

is not invertible onl .12 Hence the linear system

®d1+£0,=0, ¢’ q;+& 0,=0,

in the unknowng; ,< I, has a solutiond, ,q,) whereq; andqg, are not both zero. Recalling that
¢ and ¢ are linearly independent on an intervaif

®(X) g1+ &(X) =0 = q;=0,=0,

the fact thatg; andq, are not both zero guarantees the linear dependengeaoié onl. M
Example 1:Show thate=exd —ix] and é&=exd (i—j)x] form a basis of solutions of

V"+j W' +(1—k) ¥ =0, (17)

on any interval.
Solution: Substitution shows that they are solutions,

[-1+j(—i)+1—k]exd —ix]=0,
[—2+j(i—])+1-k]exd(i—])x]=0,

and linear independence follows from Theorem 2, since

W= i=iP+[IP+i( =)= (i=]))i=\5.
IV. HOMOGENEOUS EQUATIONS: REDUCTION OF ORDER
Let ¢ be solution of Eq(7) on some interval. Looking for a solution in the form
E=or
and substitutingt and its derivatives
g=¢' t+er and&'=¢" 1429 T +o1"
into Eq. (7), we obtain

7'=(¢ tap-2¢ 1) 7. (18)



J. Math. Phys., Vol. 44, No. 5, May 2003 Solving quaternionic differential equations 2229

It is important to observe that, for quaternionic functions,e@enotgive a formal solution of the
previous equation. Only in particular cases, E®) can be immediately integrated. For example,
for homogeneous second order equations with constant coefficients,

a(x)—aeH and B(x)—beH,

at least one solution is in the form of a quaternionic exponentialexg gx], and consequently
Eq. (18) reduces to

e7'=(a—2q) o7'. (19

Let us introduce the quaternionic function
o=¢7.
Observing that
o'=¢' ' ter'=qor + o7,
Eqg. (19 can be rewritten as follows:
o' =(a—q)o. (20)

This equation can be immediately integrated, its solution reads

o=exd (a—qg)x].

Thus, the second solution of the homogeneous second order differential equation with constant
coefficients is given by

§=ex;{qx]f exd —gx] exd (a—q)x] dx. (21

In the complex limit @,qe C) we find the well-known resultgeexd(a—q)x] if 2q#a and &

«x exggx| if 2g=a. In the quaternionic case(qe (), the integral which appears (21) must

be treated with care. The solution of this integral will give interesting information about the
second solution of quaternionic differential equations with constant coefficients when the associ-
ated characteristic quadratic equation has a unique solution. To solve the integral(21)Ege

start by observing that

[eUXerX]' =y ¥ e+ "X e"¥p = (L, + R,) eUx giX

If the operatorL,+ R, is invertible the previous equality implies
f e e dx=(L,+R,) te'xe’X

This result guarantees that, if the operaltor,—R,_ is invertible the second solution can be
written in the form

é=exdgx] (L—q+Ra—q)_lqu_qX] exd (a—q)x]
=exgx] (Ryq—Lq) ~exd —gx] exd (a—q)x]. (22)

If the operatoL 4+ R, is notinvertible, we need to solve the integral which appear@in by
using the polar decomposition of quaternidese example)3and a term linearly dependent &n
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will appear. In the complex cas@,q e (), the operatot. _,+R,_q is not invertible if and only
if 2q=a. In the quaternionicd,q e ), the condition 2/# a does not guarantee that the operator
is invertible.
Example 2Knowing thate=exy —ix] is solution of the homogeneous second order equation
(17), find (by using the method of reduction of ordler second independent solutiah,
Solution: We haveq= —i anda=—j. To use Eq(22) we have to prove that the operator

L_q+Ra—q=Li+Ri_]
is invertible. A simple algebraic calculation shows that
(Li—Ri-p(Li+Ri-)=1.
Thus,
(L_g+tRag) *=Li—Ri_
We are now ready to calculatefrom Eq. (22),
E=exd —ix] (Li—Ri-j) exix] exd (i —j)x]=(Li=Ri—j) exd (i —)x]=exd (i —)x] |.

Due to thell linearity (from the righy of Eq. (17) the right factorj can be ignored recovering the
solution of example 1.
Example 3:Inspection shows that

k
‘P”+i\[f’+§=0 (23
hase=exp{— [(i+])/2] x} as a first solution. Find the second linear independent solution.
Solution We haveq= — (i+]j)/2 anda= —i. In this case, the operator
L_gtRa—q=Li+j2t Ri-ir2

is notinvertible. This is easily seen by using, for example, the real matrix representatidmus,
the integral in Eq(21) cannot be expressed in terms of an exponential product. Let us explicitly
calculate¢ from Eq. (21). We find

RS f i+j j—i g
§—exp_—7x_ ex TX ex TX X
[ i+j ] X i+j . X X j—i : x)
=expg — ——X f C0S— + ——sin—| | coS— + ——sin—| dx
| 2 ] v2 V2 V2 v2 V2 f

[ i+j ] o 1+k
=exg— — X f{l—kexp[—(wj)x]}de.

Due to thell linearity (from the righ} of Eq. (23) the right factor (& k)/2 can be removed. After

integration, we find
B i+] '—j i+]
E=exp — TX - exp — TX .

Observe that the quaternionic factarj)/2 appears on the left of the quaternionic exponential
and consequentlgannotbe removed. It is a fundamental part of the solution. Inspection shows
that

(x K—— exr[ (i+])x]
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i+
§=xexr{—71x

is not the solution of Eq(23).

V. NONHOMOGENEOUS EQUATIONS: VARIATION OF PARAMETERS
A general solution of the nonhomogeneous equatiris a solution of the form
V=v,+¥,, (24
where
Yh=eqi+&a,

is a general solution of the homogeneous equatiyrand ¥, is any particular solution of4)
containing no arbitrary constants. In this section we discuss the so-called method of variation of
parameters to find a particular solution for quaternionic nonhomogeneous differential equations.
A method to solve a homogeneous second order quaternionic differential equations with
constant coefficients has been recently develdp@daternionic differential equations with non-
constant coefficients are under investigation. We suppose to know two independent solutions of
the homogeneous equation associated with &g. We wish to investigate if the method of
variation of parameters still works in the quaternionic case.
The method of variation of parameters involves replacing the congiaandq, by quater-
nionic functionsr4(x) and v,(x) to be determined so that the resulting function

Vo=pvitév,
is a particular solution of E¢(4). By differentiating¥, we obtain
V=@ 'vi+&vtov+Ev,.

The requirement tha¥’, satisfies Eq(4) imposes onlyone condition onv; and»,. Hence, we
can impose a second arbitrary condition, that is

pvi+Evy=0. (25)

This reducesl, to the form
Vo=@ v+ ¢ v,
By differentiating this function we have
Vi=¢" v+t v+ & v+ & vy

Substituting¥,, ¥, andW¥y in Eq. (4) we readily obtain

o'vi+&vy=p. (26)
Collecting Eq.(25) and Eq.(26), we can construct the following matrix system:
¢ &
@' 5’)

!
41

i

'
Vy P

from which (W|+#0) we obtain
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) (¢ &)70] [Le—& b1t L' =E8E el 1g
=l e = , A I (28)
2o [é—gp 11 [E—0'e 7¢]
Then,
vi=[e' —&¢ o] p and vi=[¢' —¢ ¢ *¢] tp. 29

To find v,(x) andv,(x) we have to integrate the previous equations.
Example 4:Find a general solution of the nonhomogeneous quaternionic differential equation

P+ +(1-k) T =ix. (30)
Solution: The solution of the associated homogeneous equétiea example )lis

Vp=exgd —ix]g;texd —(i+j)x]q,.
The particular solution is

Wo=exd —ix]vi+exd —(i+])x] vy.
Consequently, from Eq$29) we find

vi=exgdix]xk and vy=—exd (i+j)x]xk
which after integration give
r(x)=(1—ix)exdix]k and wvy(x)=—3[1—(i+])x]exd(i+j)x]k.
Finally
Wo=3[(i+])x+kK].
A general solution of Eq(23) is
V=exd—ix]g,+exd —(i+j)x]a,+3[(i+])x+k].

VI. CONCLUSIONS AND OUTLOOKS

The recent results on violations of quantum mechanics by quaternionic poteatialthe
possibility to get a better understanding of CP-violation phenomena within a quaternionic formu-
lation of physical theorids™ stimulated the study of quaternionic differential operatohs.this
paper, we have proved existence and uniqueness for quaternionic initial value problems and solved
simple quaternionic differential equations by discussing the reduction of order for quaternionic
homogeneous equations and by extending to the noncommutative case the method of variation of
parameters and the definition of absolute value of the Wronskian functional.

In view of a more complete discussion of quantum dynamical systems using quaternionic
wave packets, our next researchathematicalinterest will be the study of quaternionic integral
transforms. The quaternionic formulation of Fourier transforms could find an immediate and
interesting application in the study of delay time modifications of wave packets scattered by a
quaternionic potential step.
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