169 research outputs found

    Methicillin-Resistance in Staphylococcus aureus Is Not Affected by the Overexpression in Trans of the mecA Gene Repressor: A Surprising Observation

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is intrinsically cross-resistant to virtually all β-lactam antibiotics. The central determinant for the MRSA phenotype is the mecA gene, whose transcriptional control may be mediated by a repressor (mecI) and a sensor/inducer (mecR1). The mecI-mecR1-mediated induction of mecA takes several hours rendering the strains phenotypically susceptible in spite of the presence of the resistance gene. Therefore, it has been proposed that the full resistance to β-lactams observed in many contemporary clinical MRSA strains requires a non-functional mecI-mecR1 regulatory system. The mecA gene is embedded in a large chromosomal cassette (the SCCmec element) for which several structural types have been described. Some epidemic MRSA clones, typically expressing full β-lactam resistance, carry SCCmec elements that contain an intact mecI-mecR1 locus (e.g. SCCmec types II and III). We have addressed this apparent contradiction by first sequencing the mecI coding region and mecA promoter sequences in a collection of prototype MRSA strains characterized by different SCCmec types. A conserved non-sense mutation within mecI was detected in all SCCmec type III strains tested, presumably responsible for a non-functional truncated MecI protein and, therefore, explaining the full resistance phenotype. In SCCmec type II strains no conserved mutations were found. We next transformed a collection of prototype MRSA epidemic strains with a recombinant plasmid overexpressing a wild-type copy of mecI. Surprisingly, for the great majority of the strains no significant alterations in the phenotypic expression of β-lactam resistance could be detected. These findings were confirmed and further explored, challenging the currently accepted mechanism of mecA transcriptional control. Our observations suggest the existence of yet unidentified additional determinants involved in the transcriptional control of mecA gene and point to a revision of the mecA regulatory mechanism in contemporary MRSA strains

    Re-evaluation of Streptococcus pneumoniae carriage in Portuguese elderly by qPCR increases carriage estimates and unveils an expanded pool of serotypes

    Get PDF
    Streptococcus pneumoniae (pneumococcus) is a leading cause of infections worldwide. Disease is preceded by asymptomatic colonization of the upper respiratory tract. Classical culture-based methods (CCBM) suggest that colonization in the elderly is <5%. Recently, use of qPCR has challenged these observations. We estimated pneumococcal carriage prevalence and serotypes among Portuguese elderly using qPCR and compared results with those obtained by CCBM. Nasopharyngeal and oropharyngeal paired samples (599 each) of individuals over 60 years living in nursing (n = 299) or family (n = 300) homes were screened for the presence of pneumococci by qPCR targeting lytA and piaB. Positive samples were molecular serotyped. Use of qPCR improved detection of pneumococci in oropharyngeal samples compared to CCBM: from 0.7% to 10.4% (p < 0.001) in the nursing home collection, and from 0.3% to 5.0% (p < 0.001) in the family home collection. No significant differences were observed between both methods in nasopharyngeal samples (5.4% vs. 5.4% in the nursing homes; and 4.3% vs. 4.7% in the family homes). Twenty-one serotypes/serogroups were detected by qPCR compared to 14 by CCBM. In conclusion, use of qPCR suggests that pneumococcal carriage in Portuguese elderly is approximately 10%, and unveiled a large pool of serotypes. These results are important to understand progression to disease and impact of pneumococcal vaccines in the elderly.publishersversionpublishe

    Split-BOLFI for for misspecification-robust likelihood free inference in high dimensions

    Full text link
    Likelihood-free inference for simulator-based statistical models has recently grown rapidly from its infancy to a useful tool for practitioners. However, models with more than a very small number of parameters as the target of inference have remained an enigma, in particular for the approximate Bayesian computation (ABC) community. To advance the possibilities for performing likelihood-free inference in high-dimensional parameter spaces, here we introduce an extension of the popular Bayesian optimisation based approach to approximate discrepancy functions in a probabilistic manner which lends itself to an efficient exploration of the parameter space. Our method achieves computational scalability by using separate acquisition procedures for the discrepancies defined for different parameters. These efficient high-dimensional simulation acquisitions are combined with exponentiated loss-likelihoods to provide a misspecification-robust characterisation of the marginal posterior distribution for all model parameters. The method successfully performs computationally efficient inference in a 100-dimensional space on canonical examples and compares favourably to existing Copula-ABC methods. We further illustrate the potential of this approach by fitting a bacterial transmission dynamics model to daycare centre data, which provides biologically coherent results on the strain competition in a 30-dimensional parameter space

    Analysis of a Cell Wall Mutant Highlights Rho-Dependent Genome Amplification Events in Staphylococcus aureus

    Get PDF
    This work was financed by national funds from FCT - Fundação para a Ciência e a Tecnologia, I.P., in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences - UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy - i4HB. This work was also supported by FCT through grants PTDC/BIA-MIC/31645/2017 (awarded to R.G.S.) and PTDC/CVT-CVT/29510/2017 (awarded to M.M.); Projects LISBOA-01-0145-FEDER007660 (Microbiologia Molecular, Estrutural e Celular) and UID/Multi/04378/2019 funded by FEDER funds through COMPETE2020—Programa Operacional de Competitividade e Internacionalização (POCI); and by ONEIDA project (LISBOA-01-0145-FEDER-016417) co-funded by FEEI—“Fundos Europeus Estruturais e de Investimento” from “Programa Operacional Regional Lisboa2020” and by national funds through FCT.In a study of antibiotic resistance in Staphylococcus aureus, specific cell wall mutants were previously generated for the peptidoglycan biosynthesis gene murF, by the insertion of an integrative plasmid. A collection of 30 independent mutants was obtained, and all harbored a variable number of copies of the inserted plasmid, arranged in tandem in the chromosome. Of the 30 mutants, only 3, F9, F20 and F26, with a lower number of plasmid copies, showed an altered peptidoglycan structure, lower resistance to β-lactams and a different loss-of-function mutation in rho gene, that encodes a transcription termination factor. The rho mutations were found to correlate with the level of oxacillin resistance, since genetic complementation with rho gene reestablished the resistance and cell wall parental profile in F9, F20 and F26 strains. Furthermore, complementation with rho resulted in the amplification of the number of plasmid tandem repeats, suggesting that Rho enabled events of recombination that favored a rearrangement in the chromosome in the region of the impaired murF gene. Although the full mechanism of reversion of the cell wall damage was not fully elucidated, we showed that Rho is involved in the recombination process that mediates the tandem amplification of exogeneous DNA fragments inserted into the chromosomepublishersversionpublishe

    Novel coating containing molybdenum oxide nanoparticles to reduce Staphylococcus aureus contamination on inanimate surfaces

    Get PDF
    We previously synthetized molybdenum oxide (MoO3) nanoparticles (NP) and showed their antibacterial activity against a representative collection of the most relevant bacterial species responsible for hospital-acquired infections, including Staphylococcus aureus. The aim of the present study was to prepare and characterize a novel coating with these MoO3 NP, confirm its mechanical stability, and investigate its biocidal effect to reduce S. aureus contamination on inanimate surfaces. In addition, the novel MoO3 NP coating was compared to a silver (Ag) NP coating synthetized by the same procedure. The MoO3 and Ag NP coatings were characterized in terms of their chemical structure by FT-IR, surface morphology by scanning electron microscopy, and mechanical properties by tensile and adhesion tests. The antimicrobial activity of the coatings was tested by following the loss of viability of S. aureus after 6h, 24h, 48h, and 72h exposure. MoO3 and Ag coatings exhibited surfaces of comparable morphologies and both presented elastomeric properties (tensile strength of similar to 420 kPa, Youngs modulus of similar to 48 kPa, and maximum elongation of similar to 12%), and excellent (classification of 5B) adhesion to glass, steel and polystyrene surfaces. The two coatings exhibited a good antibacterial activity (R) against S. aureus over time (R-MoO3 = 0.20.81; R-Ag = 0.612.37), although the effect of the Ag NP coating was more pronounced, especially at 72h (R-MoO3 = 0.81 vs R-Ag = 2.37). Noteworthy, contrary to the Ag NP coating, the MoO3 NP coating was colourless and transparent, avoiding undesired unaesthetic effects. The synthetized coating with NP of MoO3, which has low toxicity to humans, capability of biodegradation, and rapid excretion, can be applied onto most standard materials and therefore is a promising tool to reduce S. aureus contamination on usual inanimate surfaces found in healthcare and community environments.info:eu-repo/semantics/publishedVersio

    Distinct phenotypic and genomic signatures underlie contrasting pathogenic potential of Staphylococcus epidermidis clonal lineages

    Get PDF
    Copyright © 2019 Espadinha, Sobral, Mendes, Méric, Sheppard, Carriço, de Lencastre and Miragaia. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Background: Staphylococcus epidermidis is a common skin commensal that has emerged as a pathogen in hospitals, mainly related to medical devices-associated infections. Noteworthy, infection rates by S. epidermidis have the tendency to rise steeply in next decades together with medical devices use and immunocompromized population growth. Staphylococcus epidermidis population structure includes two major clonal lineages (A/C and B) that present contrasting pathogenic potentials. To address this distinction and explore the basis of increased pathogenicity of A/C lineage, we performed a detailed comparative analysis using phylogenetic and integrated pangenome-wide-association study (panGWAS) approaches and compared the lineages's phenotypes in in vitro conditions mimicking carriage and infection. Results: Each S. epidermidis lineage had distinct phenotypic signatures in skin and infection conditions and differed in genomic content. Combination of phenotypic and genotypic data revealed that both lineages were well adapted to skin environmental cues. However, they appear to occupy different skin niches, perform distinct biological functions in the skin and use different mechanisms to complete the same function: lineage B strains showed evidence of specialization to survival in microaerobic and lipid rich environment, characteristic of hair follicle and sebaceous glands; lineage A/C strains showed evidence for adaption to diverse osmotic and pH conditions, potentially allowing them to occupy a broader and more superficial skin niche. In infection conditions, A/C strains had an advantage, having the potential to bind blood-associated host matrix proteins, form biofilms at blood pH, resist antibiotics and macrophage acidity and to produce proteases. These features were observed to be rare in the lineage B strains. PanGWAS analysis produced a catalog of putative S. epidermidis virulence factors and identified an epidemiological molecular marker for the more pathogenic lineage. Conclusion: The prevalence of A/C lineage in infection is probably related to a higher metabolic and genomic versatility that allows rapid adaptation during transition from a commensal to a pathogenic lifestyle. The putative virulence and phenotypic factors associated to A/C lineage constitute a reliable framework for future studies on S. epidermidis pathogenesis and the finding of an epidemiological marker for the more pathogenic lineage is an asset for the management of S. epidermidis infections.DE and CM were supported by Ph.D. grants PD/BD/52206/2013 and SFRH/BD/129483/2017, respectively, from the Fundação para a Ciência e Tecnologia (FCT). This work was partially supported by project PTDC/FIS-NAN/0117/2014, project PTDC/CVT-CVT/29510/2017, project PTDC/BIA-MIC/31645/2017, and project EXPOSE - SAICT-POL/23222/2016 from FCT; Projects LISBOA-01-0145-FEDER-007660 (Microbiologia Molecular, Estrutural e Celular) and UID/Multi/04378/2019) funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI); by ONEIDA project (LISBOA-01-0145-FEDER- 016417) co-funded by FEEI - “Fundos Europeus Estruturais e de Investimento” from “Programa Operacional Regional Lisboa2020” and by national funds through FCT; Operacional Competitividade e Internacionalização, Programa Operacional Regional de Lisboa (FEDER) and Fundação para a Ciência e a Tecnologia.info:eu-repo/semantics/publishedVersio

    EURISWEB – Web-based epidemiological surveillance of antibiotic-resistant pneumococci in Day Care Centers

    Get PDF
    BACKGROUND: EURIS (European Resistance Intervention Study) was launched as a multinational study in September of 2000 to identify the multitude of complex risk factors that contribute to the high carriage rate of drug resistant Streptococcus pneumoniae strains in children attending Day Care Centers in several European countries. Access to the very large number of data required the development of a web-based infrastructure – EURISWEB – that includes a relational online database, coupled with a query system for data retrieval, and allows integrative storage of demographic, clinical and molecular biology data generated in EURIS. METHODS: All components of the system were developed using open source programming tools: data storage management was supported by PostgreSQL, and the hypertext preprocessor to generate the web pages was implemented using PHP. The query system is based on a software agent running in the background specifically developed for EURIS. RESULTS: The website currently contains data related to 13,500 nasopharyngeal samples and over one million measures taken from 5,250 individual children, as well as over one thousand pre-made and user-made queries aggregated into several reports, approximately. It is presently in use by participating researchers from three countries (Iceland, Portugal and Sweden). CONCLUSION: An operational model centered on a PHP engine builds the interface between the user and the database automatically, allowing an easy maintenance of the system. The query system is also sufficiently adaptable to allow the integration of several advanced data analysis procedures far more demanding than simple queries, eventually including artificial intelligence predictive models

    Staphylococcus saprophyticus from clinical and environmental origins have distinct biofilm composition

    Get PDF
    Biofilm formation has been shown to be critical to the success of uropathogens. Although Staphylococcus saprophyticus is a common cause of urinary tract infections, its biofilm production capacity, composition, genetic basis, and origin are poorly understood. We investigated biofilm formation in a large and diverse collection of S. saprophyticus (n = 422). Biofilm matrix composition was assessed in representative strains (n = 63) belonging to two main S. saprophyticus lineages (G and S) recovered from human infection, colonization, and food-related environment using biofilm detachment approach. To identify factors that could be associated with biofilm formation and structure variation, we used a pangenome-wide association study approach. Almost all the isolates (91%; n = 384/422) produced biofilm. Among the 63 representative strains, we identified eight biofilm matrix phenotypes, but the most common were composed of protein or protein-extracellular DNA (eDNA)-polysaccharides (38%, 24/63 each). Biofilms containing protein-eDNA-polysaccharides were linked to lineage G and environmental isolates, whereas protein-based biofilms were produced by lineage S and infection isolates (p < 0.05). Putative biofilm-associated genes, namely, aas, atl, ebpS, uafA, sasF, sasD, sdrH, splE, sdrE, sdrC, sraP, and ica genes, were found with different frequencies (3-100%), but there was no correlation between their presence and biofilm production or matrix types. Notably, icaC_1 was ubiquitous in the collection, while icaR was lineage G-associated, and only four strains carried a complete ica gene cluster (icaADBCR) except one that was without icaR. We provided evidence, using a comparative genomic approach, that the complete icaADBCR cluster was acquired multiple times by S. saprophyticus and originated from other coagulase-negative staphylococci. Overall, the composition of S. saprophyticus biofilms was distinct in environmental and clinical isolates, suggesting that modulation of biofilm structure could be a key step in the pathogenicity of these bacteria. Moreover, biofilm production in S. saprophyticus is ica-independent, and the complete icaADBCR was acquired from other staphylococci

    Foodborne Origin and Local and Global Spread of Staphylococcus saprophyticus Causing Human Urinary Tract Infections

    Get PDF
    Staphylococcus saprophyticus is a primary cause of community-acquired urinary tract infections (UTIs) in young women. S. saprophyticus colonizes humans and animals but basic features of its molecular epidemiology are undetermined. We conducted a phylogenomic analysis of 321 S. saprophyticus isolates collected from human UTIs worldwide during 1997-2017 and 232 isolates from human UTIs and the pig-processing chain in a confined region during 2016-2017. We found epidemiologic and genomic evidence that the meat-production chain is a major source of S. saprophyticus causing human UTIs; human microbiota is another possible origin. Pathogenic S. saprophyticus belonged to 2 lineages with distinctive generic features that are globally and locally disseminated. Pangenome-wide approaches identified a strong association between pathogenicity and antimicrobial resistance, phages, platelet binding proteins, and an increased recombination rate. Our study provides insight into the origin, transmission, and population structure of pathogenic S. saprophyticus and identifies putative new virulence factors
    corecore