219 research outputs found

    Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor

    Get PDF
    Pepper (Capsicum L.) is a nutritionally and economically important crop that is cultivated throughout the world as a vegetable, condiment, and food additive. Genetic transformation using Agrobacterium tumefaciens (agrobacterium) is a powerful biotechnology tool that could be used in pepper to develop community-based functional genomics resources and to introduce important agronomic traits. However, pepper is considered to be highly recalcitrant for agrobacterium-mediated transformation, and current transformation protocols are either inefficient, cumbersome or highly genotype dependent. The main bottleneck in pepper transformation is the inability to generate cells that are competent for both regeneration and transformation. Here, we report that ectopic expression of the Brassica napus BABY BOOM AP2/ERF transcription factor overcomes this bottleneck and can be used to efficiently regenerate transgenic plants from otherwise recalcitrant sweet pepper (C. annuum) varieties. Transient activation of BABY BOOM in the progeny plants induced prolific cell regeneration and was used to produce a large number of somatic embryos that could be converted readily to seedlings. The data highlight the utility of combining biotechnology and classical plant tissue culture approaches to develop an efficient transformation and regeneration system for a highly recalcitrant vegetable crop

    Identification of a pathogenic deep intronic variant in ATRX ends a diagnostic odyssey

    Get PDF
    Variation in the non-coding genome is being increasingly recognized to be involved in monogenic disease etiology. However, the interpretation of non-coding variation is complicated by a lack of understanding of how non-coding genetic elements function. Additional lines of evidence are therefore needed to recognize non-coding variants as pathogenic. We here present a case where a collective body of evidence resulted in the identification and conclusive classification of a pathogenic deep intronic variant in ATRX. This report demonstrates the utility of a multi-platform approach in aiding the identification of pathogenic variants outside coding regions. Furthermore, it marks the first reported instance of a deep intronic pathogenic variant in ATRX

    Increased ventral striatal volume in college-aged binge drinkers

    Get PDF
    BACKGROUND Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala. METHOD T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data. RESULTS Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups. CONCLUSIONS Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor

    Outcomes and comorbidities of SCN1A-related seizure disorders

    Get PDF
    PURPOSE: Differentiating between Dravet syndrome and non-Dravet SCN1A-related phenotypes is important for prognosis regarding epilepsy severity, cognitive development, and comorbidities. When a child is diagnosed with genetic epilepsy with febrile seizures plus (GEFS+) or febrile seizures (FS), accurate prognostic information is essential as well, but detailed information on seizure course, seizure freedom, medication use, and comorbidities is lacking for this milder patient group. In this cross-sectional study, we explore disease characteristics in milder SCN1A-related phenotypes and the nature, occurrence, and relationships of SCN1A-related comorbidities in both patients with Dravet and non-Dravet syndromes. METHODS: A cohort of 164 Dutch participants with SCN1A-related seizures was evaluated, consisting of 116 patients with Dravet syndrome and 48 patients with either GEFS+, febrile seizures plus (FS+), or FS. Clinical data were collected from medical records, semi-structured telephone interviews, and three questionnaires: the Functional Mobility Scale (FMS), the Pediatric Quality of Life Inventory (PedsQL) Measurement Model, and the Child or Adult Behavior Checklists (CBCL/ABCL). RESULTS: Walking disabilities and severe behavioral problems affect 71% and 43% of patients with Dravet syndrome respectively and are almost never present in patients with non-Dravet syndromes. These comorbidities are strongly correlated to lower quality-of-life (QoL) scores. Less severe comorbidities occur in patients with non-Dravet syndromes: learning problems and psychological/behavioral problems are reported for 27% and 38% respectively. The average QoL score of the non-Dravet group was comparable with that of the general population. The majority of patients with non-Dravet syndromes becomes seizure-free after 10 years of age (85%). CONCLUSIONS: Severe behavioral problems and walking disabilities are common in patients with Dravet syndrome and should receive specific attention during clinical management. Although the epilepsy course of patients with non-Dravet syndromes is much more favorable, milder comorbidities frequently occur in this group as well. Our results may be of great value for clinical care and informing newly diagnosed patients and their parents about prognosis

    De novo mutations of KIAA2022 in females cause intellectual disability and intractable epilepsy

    Get PDF
    Background Mutations in the KIAA2022 gene have been reported in male patients with X-linked intellectual disability, and related female carriers were unaffected. Here, we report 14 female patients who carry a heterozygous de novo KIAA2022 mutation and share a phenotype characterised by intellectual disability and epilepsy. Methods Reported females were selected for genetic testing because of substantial developmental problems and/or epilepsy. X-inactivation and expression studies were performed when possible. Results All mutations were predicted to result in a frameshift or premature stop. 12 out of 14 patients had intractable epilepsy with myoclonic and/or absence seizures, and generalised in 11. Thirteen patients had mild to severe intellectual disability. This female phenotype partially overlaps with the reported male phenotype which consists of more severe intellectual disability, microcephaly, growth retardation, facial dysmorphisms and, less frequently, epilepsy. One female patient showed completely skewed X-inactivation, complete absence of RNA expression in blood and a phenotype similar to male patients. In the six other tested patients, X-inactivation was random, confirmed by a non-significant twofold to threefold decrease of RNA expression in blood, consistent with the expected mosaicism between cells expressing mutant or normal KIAA2022 alleles. Conclusions Heterozygous loss of KIAA2022 expression is a cause of intellectual disability in females. Compared with its hemizygous male counterpart, the heterozygous female disease has less severe intellectual disability, but is more often associated with a severe and intractable myoclonic epilepsy

    NEXMIF encephalopathy:an X-linked disorder with male and female phenotypic patterns

    Get PDF
    Purpose Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. Methods Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. Results Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. Conclusion NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants

    Genotype–phenotype associations in 1018 individuals with SCN1A-related epilepsies

    Get PDF
    Objective: SCN1A variants are associated with epilepsy syndromes ranging from mild genetic epilepsy with febrile seizures plus (GEFS+) to severe Dravet syndrome (DS). Many variants are de novo, making early phenotype prediction difficult, and genotype–phenotype associations remain poorly understood. Methods: We assessed data from a retrospective cohort of 1018 individuals with SCN1A-related epilepsies. We explored relationships between variant characteristics (position, in silico prediction scores: Combined Annotation Dependent Depletion (CADD), Rare Exome Variant Ensemble Learner (REVEL), SCN1A genetic score), seizure characteristics, and epilepsy phenotype. Results: DS had earlier seizure onset than other GEFS+ phenotypes (5.3 vs. 12.0 months, p <.001). In silico variant scores were higher in DS versus GEFS+ (p <.001). Patients with missense variants in functionally important regions (conserved N-terminus, S4–S6) exhibited earlier seizure onset (6.0 vs. 7.0 months, p =.003) and were more likely to have DS (280/340); those with missense variants in nonconserved regions had later onset (10.0 vs. 7.0 months, p =.036) and were more likely to have GEFS+ (15/29, χ2 = 19.16, p <.001). A minority of protein-truncating variants were associated with GEFS+ (10/393) and more likely to be located in the proximal first and last exon coding regions than elsewhere in the gene (9.7% vs. 1.0%, p <.001). Carriers of the same missense variant exhibited less variability in age at seizure onset compared with carriers of different missense variants for both DS (1.9 vs. 2.9 months, p =.001) and GEFS+ (8.0 vs. 11.0 months, p =.043). Status epilepticus as presenting seizure type is a highly specific (95.2%) but nonsensitive (32.7%) feature of DS. Significance: Understanding genotype–phenotype associations in SCN1A-related epilepsies is critical for early diagnosis and management. We demonstrate an earlier disease onset in patients with missense variants in important functional regions, the occurrence of GEFS+ truncating variants, and the value of in silico prediction scores. Status epilepticus as initial seizure type is a highly specific, but not sensitive, early feature of DS

    Genotype–phenotype associations in 1018 individuals with SCN1A‐related epilepsies

    Get PDF
    Objective: SCN1A variants are associated with epilepsy syndromes ranging from mild genetic epilepsy with febrile seizures plus (GEFS+) to severe Dravet syndrome (DS). Many variants are de novo, making early phenotype prediction difficult, and genotype–phenotype associations remain poorly understood. Methods: We assessed data from a retrospective cohort of 1018 individuals with SCN1A-related epilepsies. We explored relationships between variant characteristics (position, in silico prediction scores: Combined Annotation Dependent Depletion (CADD), Rare Exome Variant Ensemble Learner (REVEL), SCN1A genetic score), seizure characteristics, and epilepsy phenotype. Results: DS had earlier seizure onset than other GEFS+ phenotypes (5.3 vs. 12.0 months, p &lt; .001). In silico variant scores were higher in DS versus GEFS+ (p &lt; .001). Patients with missense variants in functionally important regions (conserved N-terminus, S4–S6) exhibited earlier seizure onset (6.0 vs. 7.0 months, p = .003) and were more likely to have DS (280/340); those with missense variants in nonconserved regions had later onset (10.0 vs. 7.0 months, p = .036) and were more likely to have GEFS+ (15/29, χ2 = 19.16, p &lt; .001). A minority of protein-truncating variants were associated with GEFS+ (10/393) and more likely to be located in the proximal first and last exon coding regions than elsewhere in the gene (9.7% vs. 1.0%, p &lt; .001). Carriers of the same missense variant exhibited less variability in age at seizure onset compared with carriers of different missense variants for both DS (1.9 vs. 2.9 months, p = .001) and GEFS+ (8.0 vs. 11.0 months, p = .043). Status epilepticus as presenting seizure type is a highly specific (95.2%) but nonsensitive (32.7%) feature of DS. Significance: Understanding genotype–phenotype associations in SCN1A-related epilepsies is critical for early diagnosis and management. We demonstrate an earlier disease onset in patients with missense variants in important functional regions, the occurrence of GEFS+ truncating variants, and the value of in silico prediction scores. Status epilepticus as initial seizure type is a highly specific, but not sensitive, early feature of DS

    Antenatal ureaplasma infection causes colonic mucus barrier defects: implications for intestinal pathologies

    Get PDF
    Chorioamnionitis is a risk factor for necrotizing enterocolitis (NEC). Ureaplasma parvum (UP) is clinically the most isolated microorganism in chorioamnionitis, but its pathogenicity remains debated. Chorioamnionitis is associated with ileal barrier changes, but colonic barrier alterations, including those of the mucus barrier, remain under-investigated, despite their importance in NEC pathophysiology. Therefore, in this study, the hypothesis that antenatal UP exposure disturbs colonic mucus barrier integrity, thereby potentially contributing to NEC pathogenesis, was investigated. In an established ovine chorioamnionitis model, lambs were intra-amniotically exposed to UP or saline for 7 d from 122 to 129 d gestational age. Thereafter, colonic mucus layer thickness and functional integrity, underlying mechanisms, including endoplasmic reticulum (ER) stress and redox status, and cellular morphology by transmission electron microscopy were studied. The clinical significance of the experimental findings was verified by examining colon samples from NEC patients and controls. UP-exposed lambs have a thicker but dysfunctional colonic mucus layer in which bacteria-sized beads reach the intestinal epithelium, indicating undesired bacterial contact with the epithelium. This is paralleled by disturbed goblet cell MUC2 folding, pro-apoptotic ER stress and signs of mitochondrial dysfunction in the colonic epithelium. Importantly, the colonic epithelium from human NEC patients showed comparable mitochondrial aberrations, indicating that NEC-associated intestinal barrier injury already occurs during chorioamnionitis. This study underlines the pathogenic potential of UP during pregnancy; it demonstrates that antenatal UP infection leads to severe colonic mucus barrier deficits, providing a mechanistic link between antenatal infections and postnatal NEC development
    corecore