2,551 research outputs found

    Development of a National Core Dataset for Preoperative Assessment

    Get PDF
    Objective:To define a core dataset for preoperative assessment to leverage uniform data collection in this domain. This uniformity is a prerequisite for data exchange between care providers and semantic interoperability between health record systems. Methods: To design this core dataset a combination of literature review and expert consensus meetings were used. In the first meeting a working definition for “core dataset” was specified. Subgroups were formed to address major headings of the core dataset. In the following eight meetings data items for each subheading were discussed. The items in the resulting draft of the dataset were compared to those retrieved from an earlier literature review study. In the last two expert meetings modifications of the dataset were performed based on the result of this literature study. Results: Based on expert consensus a draft dataset including 82 data items was designed. Seventy-six percent of data items in the draft dataset were covered by the literature study. Nine data items were modified in the draft and 14 data items were added to the dataset based on input from the literature review. The final dataset of 93 data items covers patient history, physical examination, supplementary examination and consultation, and final judgment. Conclusions: This preoperative-assessment dataset was defined based on expert con - sensus and literature review. Both methods proved to be valuable and complementary. This dataset opens the door for creating standardized approaches in data collection in the preoperative assessment field which will facilitate interoperability between different electronic health records and different users

    Catalysis with inorganic membranes

    Get PDF
    Catalytic inorganic membranes are among the most challenging and intriguing porous materials. Consisting of a thin film of mesoporous or microporous inorganic material deposited on a macroporous material, catalytic membranes are multifunctional materials that must be engineered for both chemical and physical properties. New approaches to carrying out chemical reactions are possible by tailoring the membrane catalytic activity and selectivity, permselectivity, and other thin film properties. Readers are referred to several recent reviews of inorganic membranes, in particular, Zaspalis and Burggraaf, Armor, Gellings and Bouwmeister, Hsieh, Stoukides, and Tsotsis et al. Inorganic membranes are most conveniently classified according to pore size (see introductory article). Of particular importance is the ratio of the pore size to the molecular mean free path (MFP). Decreasing pore dimensions lead to increased selectivity with corresponding loss of permeability. Macroporous membranes have a pore size much larger than the MFP, leading to molecular (bulk) diffusion or viscous flow. Knudsen diffusion dominates in the mesoporous regime, where the pore size is comparable to the MFP. In addition, surface diffusion of the molecules along the pore walls may contribute, leading to an enhanced flux of the adsorbed species along the walls. The microporous regime is encountered when the pore size is comparable to the molecules. This regime makes possible much higher permselectivities, which depend on both molecular size and specific interactions with the solid. Finally, in dense membranes, molecular transport occurs through a solution-diffusion mechanism, which also involves specific interactions between the solute and membrane

    Fluctuating hydrodynamic modelling of fluids at the nanoscale

    Get PDF
    A good representation of mesoscopic fluids is required to combine with molecular simulations at larger length and time scales (De Fabritiis {\it et. al}, Phys. Rev. Lett. 97, 134501 (2006)). However, accurate computational models of the hydrodynamics of nanoscale molecular assemblies are lacking, at least in part because of the stochastic character of the underlying fluctuating hydrodynamic equations. Here we derive a finite volume discretization of the compressible isothermal fluctuating hydrodynamic equations over a regular grid in the Eulerian reference system. We apply it to fluids such as argon at arbitrary densities and water under ambient conditions. To that end, molecular dynamics simulations are used to derive the required fluid properties. The equilibrium state of the model is shown to be thermodynamically consistent and correctly reproduces linear hydrodynamics including relaxation of sound and shear modes. We also consider non-equilibrium states involving diffusion and convection in cavities with no-slip boundary conditions

    The incidence, root-causes, and outcomes of adverse events in surgical units: implication for potential prevention strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We need to know the scale and underlying causes of surgical adverse events (AEs) in order to improve the safety of care in surgical units. However, there is little recent data. Previous record review studies that reported on surgical AEs in detail are now more than ten years old. Since then surgical technology and quality assurance have changed rapidly. The objective of this study was to provide more recent data on the incidence, consequences, preventability, causes and potential strategies to prevent AEs among hospitalized patients in surgical units.</p> <p>Methods</p> <p>A structured record review study of 7,926 patient records was carried out by trained nurses and medical specialist reviewers in 21 Dutch hospitals. The aim was to determine the presence of AEs during hospitalizations in 2004 and to consider how far they could be prevented. Of all AEs, the consequences, responsible medical specialty, causes and potential prevention strategies were identified. Surgical AEs were defined as AEs attributable to surgical treatment and care processes and were selected for analysis in detail.</p> <p>Results</p> <p>Surgical AEs occurred in 3.6% of hospital admissions and represented 65% of all AEs. Forty-one percent of the surgical AEs was considered to be preventable. The consequences of surgical AEs were more severe than for other types of AEs, resulting in more permanent disability, extra treatment, prolonged hospital stay, unplanned readmissions and extra outpatient visits. Almost 40% of the surgical AEs were infections, 23% bleeding, and 22% injury by mechanical, physical or chemical cause. Human factors were involved in the causation of 65% of surgical AEs and were considered to be preventable through quality assurance and training.</p> <p>Conclusions</p> <p>Surgical AEs occur more often than other types of AEs, are more often preventable and their consequences are more severe. Therefore, surgical AEs have a major impact on the burden of AEs during hospitalizations. These findings concur with the results from previous studies. However, evidence-based solutions to reduce surgical AEs are increasingly available. Interventions directed at human causes are recommended to improve the safety of surgical care. Examples are team training and the surgical safety checklist. In addition, specific strategies are needed to improve appropriate use of antibiotic prophylaxis and sustainable implementation of hygiene guidelines to reduce infections.</p

    Effect of guideline based computerised decision support on decision making of multidisciplinary teams: cluster randomised trial in cardiac rehabilitation

    Get PDF
    Objective To determine the extent to which computerised decision support can improve concordance of multidisciplinary teams with therapeutic decisions recommended by guidelines

    Evidence for a two component magnetic response in UPt3

    Get PDF
    The magnetic response of the heavy fermion superconductor UPt_3 has been investigated on a microscopic scale by muon Knight shift studies. Two distinct and isotropic Knight shifts have been found for the field in the basal plane. While the volume fractions associated with the two Knight shifts are approximately equal at low and high temperatures, they show a dramatic and opposite temperature dependence around T_N. Our results are independent on the precise muon localization site. We conclude that UPt_3 is characterized by a two component magnetic response.Comment: 5 pages, 4 figure

    Some thoughts about nonequilibrium temperature

    Full text link
    The main objective of this paper is to show that, within the present framework of the kinetic theoretical approach to irreversible thermodynamics, there is no evidence that provides a basis to modify the ordinary Fourier equation relating the heat flux in a non-equilibrium steady state to the gradient of the local equilibrium temperature. This fact is supported, among other arguments, through the kinetic foundations of generalized hydrodynamics. Some attempts have been recently proposed asserting that, in the presence of non-linearities of the state variables, such a temperature should be replaced by the non-equilibrium temperature as defined in Extended Irreversible Thermodynamics. In the approximations used for such a temperature there is so far no evidence that sustains this proposal.Comment: 13 pages, TeX, no figures, to appear in Mol. Phy

    Measurement Properties of the Dutch Multifactor Fatigue Scale in Early and Late Rehabilitation of Acquired Brain Injury in Denmark

    Get PDF
    Fatigue is a major issue in neurorehabilitation without a gold standard for assessment. The purpose of this study was to evaluate measurement properties of the five subscales of the self-report questionnaire the Dutch Multifactor Fatigue Scale (DMFS) among Danish adults with acquired brain injury. A multicenter study was conducted (N = 149, 92.6% with stroke), including a stroke unit and three community-based rehabilitation centers. Unidimensionality and measurement invariance across rehabilitation settings were tested using confirmatory factor analysis. External validity with Depression Anxiety Stress Scales (DASS-21) and the EQ-5D-5L was investigated using correlational analysis. Results were mixed. Unidimensionality and partial invariance were supported for the Impact of Fatigue, Mental Fatigue, and Signs and Direct Consequences of Fatigue, range: RMSEA = 0.07–0.08, CFI = 0.94–0.99, ω = 0.78–0.90. Coping with Fatigue provided poor model fit, RMSEA = 0.15, CFI = 0.81, ω = 0.46, and Physical Fatigue exhibited local dependence. Correlations among the DMFS, DASS-21, and EQ-5D-5L were in expected directions but in larger magnitudes compared to previous research. In conclusion, three subscales of the DMFS are recommended for assessing fatigue in early and late rehabilitation, and these may facilitate the targeting of interventions across transitions in neurorehabilitation. Subscales were strongly interrelated, and the factor solution needs evaluation.</p
    • …
    corecore