104 research outputs found

    X-ray observations of the Large Magellanic Cloud pulsar PSR B0540-69 and its PWN

    Full text link
    PSR B0540-69 is a young pulsar in the Large Magellanic Cloud that has similar properties with respect to the Crab Pulsar, and is embedded in a Pulsar Wind Nebula. We have analyzed the complete archival RXTE dataset of observations of this source, together with new Swift-XRT and INTEGRAL-IBIS data. Accurate lightcurves are produced in various energy bands between 2 and 60 keV, showing no significant energy variations of the pulse shape. The spectral analysis shows that the pulsed spectrum is curved, and is best fitted up to 100 keV by a log-parabolic model: this strengthens the similarities with the Crab pulsar, and is discussed in the light of a phenomenologic multicomponent model. The total emission from this source is studied, the relative contributions of the pulsar and the PWN emission are derived, and discussed in the context of other INTEGRAL detected pulsar/PWN systems.Comment: 11 pages, 11 figures. Accepted for publication in MNRA

    Circumstellar dust as a solution to the red supergiant supernova progenitor problem

    Full text link
    We investigate the red supergiant problem: the apparent dearth of Type IIP supernova progenitors with masses between 16 and 30 M_sun. Although red supergiants with masses in this range have been observed, none have been identified as progenitors in pre-explosion images. We show that by failing to take into account the additional extinction resulting from the dust produced in the red supergiant winds, we risk underestimating the luminosity of the most massive red supergiants at the end of their lives. We estimate the initial masses of all Type IIP progenitors for which observations exist and analyse the resulting population. We find that the most likely maximum mass for a Type IIP progenitor is 21^{+2}_{-1} M_sun. This is in closer agreement with the limit predicted from single star evolution models.Comment: 10 pages, 6 figures and 4 tables. Accepted for publication in MNRA

    Hard X-ray observations of PSR J1833-1034 and its associated pulsar wind nebula

    Full text link
    PSR J1833-1034 and its associated Pulsar Wind Nebula (PWN) has been investigated in depth through X-ray observations ranging from 0.1 to 200 keV. The low energy X-ray data from Chandra reveal a complex morphology that is characterised by a bright central plerion, no thermal shell and an extended diffuse halo. The spectral emission from the central plerion softens with radial distance from the pulsar, with the spectral index ranging from Γ\Gamma = 1.61 in the central region to Γ\Gamma =2.36 at the edge of the PWN. At higher energy INTEGRAL detected the source in the 17--200 keV range. The data analysis clearly shows that the main contribution to the spectral emission in the hard X-ray energy range is originated from the PWN, while the pulsar is dominant above 200 keV. Recent HESS observations in the high energy gamma-ray domain show that PSR J1833-1034 is a bright TeV emitter, with a flux corresponding to ∼\sim2 per cent of the Crab in 1--10 TeV range. In addition the spectral shape in the TeV energy region matches well with that in the hard X-rays observed by INTEGRAL. Based on these findings, we conclude that the emission from the pulsar and its associated PWN can be described in a scenario where hard X-rays are produced through synchrotron light of electrons with Lorentz factor γ∼109\gamma\sim10^{9} in a magnetic field of ∼\sim10 micro Gauss. In this hypothesis the TeV emission is due to Inverse Compton interaction of the cooled electrons off the Cosmic Microwave Background photons. Search for PSR J1833-1034 X-ray pulsed emission, via RXTE and Swift X-ray observations, resulted in an upper limit that is about 50 per cent.Comment: 5 pages, 2 figures. Accepted for pubblication in MNRA

    On the Dynamic Stability of Cool Supergiant Atmospheres

    Full text link
    We have developed a new formalism to compute the thermodynamic coefficient Gamma1 in the theory of stellar and atmospheric stability. We generalize the classical derivation of the first adiabatic index, which is based on the assumption of thermal ionization and equilibrium between gas and radiation temperature, towards an expression which incorporates photo-ionization due to radiation with a temperature T_rad different from the local kinetic gas temperature.Our formalism considers the important non-LTE conditions in the extended atmospheres of supergiant stars. An application to the Kurucz grid of cool supergiant atmospheres demonstrates that models with T_rad =~ T_eff between 6500 K and 7500 K become most unstable against dynamic perturbations, according to Ledoux' stability integral . This results from Gamma1 and acquiring very low values, below 4/3, throughout the entire stellar atmosphere, which causes very high gas compression ratios around these effective temperatures. Based on detailed NLTE-calculations, we discuss atmospheric instability of pulsating massive yellow supergiants, like the hypergiant rho Cas (Ia+), which exist in the extension of the Cepheid instability strip, near the Eddington luminosity limit.Comment: 54 pages including figures and the Appendix, 7 figures, Accepted for The Astrophysical Journal, Main Journal, 558, Sept. 200

    Human Regulatory T Cell Suppressive Function Is Independent of Apoptosis Induction in Activated Effector T Cells

    Get PDF
    CD4(+)CD25(+)FOXP3(+) Regulatory T cells (Treg) play a central role in the immune balance to prevent autoimmune disease. One outstanding question is how Tregs suppress effector immune responses in human. Experiments in mice demonstrated that Treg restrict effector T cell (Teff) responses by deprivation of the growth factor IL-2 through Treg consumption, resulting in apoptosis of Teff.In this study we investigated the relevance of Teff apoptosis induction to human Treg function. To this end, we studied naturally occurring Treg (nTreg) from peripheral blood of healthy donors, and, to investigate Treg function in inflammation in vivo, Treg from synovial fluid of Juvenile Idiopathic Arthritis (JIA) patients (SF-Treg). Both nTreg and SF-Treg suppress Teff proliferation and cytokine production efficiently as predicted. However, in contrast with murine Treg, neither nTreg nor SF-Treg induce apoptosis in Teff. Furthermore, exogenously supplied IL-2 and IL-7 reverse suppression, but do not influence apoptosis of Teff.Our functional data here support that Treg are excellent clinical targets to counteract autoimmune diseases. For optimal functional outcome in human clinical trials, future work should focus on the ability of Treg to suppress proliferation and cytokine production of Teff, rather than induction of Teff apoptosis

    Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths

    Get PDF
    We review observations of several classes of neutron-star-powered outflows: pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe interacting directly with interstellar medium (ISM), and magnetar-powered outflows. We describe radio, X-ray, and gamma-ray observations of PWNe, focusing first on integrated spectral-energy distributions (SEDs) and global spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering array of morphologies, with jets, trails, and other structures. Several of the 23 so far identified magnetars show evidence for continuous or sporadic emission of material, sometimes associated with giant flares, and a few possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release
    • …
    corecore