587 research outputs found
Acousto-optical multiple interference switches
The authors introduce an alternative approach for acousto-optical light control based on the interference of light propagating through several waveguides, each subjected to a periodic refractive index modulation induced by a surface acoustic wave. The feasibility of the concept is demonstrated by the realization of an optical switch for arbitrary time intervals with an on/off contrast ratio of 20
S_3 and the L=1 Baryons in the Quark Model and the Chiral Quark Model
The S_3 symmetry corresponding to permuting the positions of the quarks
within a baryon allows us to study the 70-plet of L=1 baryons without an
explicit choice for the spatial part of the quark wave functions: given a set
of operators with definite transformation properties under the spin-flavor
group SU(3) x SU(2) and under this S_3, the masses of the baryons can be
expressed in terms of a small number of unknown parameters which are fit to the
observed L=1 baryon mass spectrum. This approach is applied to study both the
quark model and chiral constituent quark model. The latter theory leads to a
set of mass perturbations which more satisfactorily fits the observed L=1
baryon mass spectrum (though we can say nothing, within our approach, about the
physical reasonableness of the parameters in the fit). Predictions for the
mixing angles and the unobserved baryon masses are given for both models as
well as a discussion of specific baryons.Comment: 24 pages, requires picte
Constructing Qubits in Physical Systems
The notion of a qubit is ubiquitous in quantum information processing. In
spite of the simple abstract definition of qubits as two-state quantum systems,
identifying qubits in physical systems is often unexpectedly difficult. There
are an astonishing variety of ways in which qubits can emerge from devices.
What essential features are required for an implementation to properly
instantiate a qubit? We give three typical examples and propose an operational
characterization of qubits based on quantum observables and subsystems.Comment: 16 pages, no figures; IoP LaTeX2e style. Submitted to J. Phys. A:
Math. Ge
Critique of a Pion Exchange Model for Interquark Forces
I describe four serious defects of a widely discussed pion exchange model for
interquark forces: it doesn't solve the "spin-orbit problem" as advertised, it
fails to describe the internal structure of baryon resonances, it leads to
disastrous conclusions when extended to mesons, and it is not reasonably
connected to the physics of heavy-light systems.Comment: 20 pages, 6 figures; some clarifications and references adde
Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation
BACKGROUND: Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO) production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using guinea pig tracheal open-ring preparations, we now investigated the involvement of arginase in the modulation of neuronal nitric oxide synthase (nNOS)-mediated relaxation induced by inhibitory nonadrenergic noncholinergic (iNANC) nerve stimulation. METHODS: Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz)-induced relaxation was measured in tracheal preparations precontracted to 30% with histamine, in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to the EFS-induced relaxation was assessed by the nonselective NOS inhibitor L-NNA (0.1 mM), while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor nor-NOHA (10 μM). Furthermore, the role of substrate availability to nNOS in EFS-induced relaxation was measured in the presence of various concentrations of exogenous L-arginine. RESULTS: EFS induced a frequency-dependent relaxation, ranging from 6.6 ± 0.8% at 0.5 Hz to 74.6 ± 1.2% at 16 Hz, which was inhibited with the NOS inhibitor L-NNA by 78.0 ± 10.5% at 0.5 Hz to 26.7 ± 7.7% at 8 Hz (P < 0.01 all). In contrast, the arginase inhibitor nor-NOHA increased EFS-induced relaxation by 3.3 ± 1.2-fold at 0.5 Hz to 1.2 ± 0.1-fold at 4 Hz (P < 0.05 all), which was reversed by L-NNA to the level of control airways in the presence of L-NNA (P < 0.01 all). Similar to nor-NOHA, exogenous L-arginine increased EFS-induced airway relaxation (P < 0.05 all). CONCLUSION: The results indicate that endogenous arginase activity attenuates iNANC nerve-mediated airway relaxation by inhibition of NO generation, presumably by limiting L-arginine availability to nNOS
Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma
BACKGROUND: Using guinea pig tracheal preparations, we have recently shown that endogenous arginase activity attenuates inhibitory nonadrenergic noncholinergic (iNANC) nerve-mediated airway smooth muscle relaxation by reducing nitric oxide (NO) production – due to competition with neuronal NO-synthase (nNOS) for the common substrate, L-arginine. Furthermore, in a guinea pig model of allergic asthma, airway arginase activity is markedly increased after the early asthmatic reaction (EAR), leading to deficiency of agonist-induced, epithelium-derived NO and subsequent airway hyperreactivity. In this study, we investigated whether increased arginase activity after the EAR affects iNANC nerve-derived NO production and airway smooth muscle relaxation. METHODS: Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz)-induced relaxation was measured in tracheal open-ring preparations precontracted to 30% with histamine in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to EFS-induced relaxation was assessed by the nonselective NOS inhibitor N(ω)-nitro-L-arginine (L-NNA, 100 μM), while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor N(ω)-hydroxy-nor-L-arginine (nor-NOHA, 10 μM). Furthermore, the role of substrate availability to nNOS was measured in the presence of exogenous L-arginine (5.0 mM). RESULTS: At 6 h after ovalbumin-challenge (after the EAR), EFS-induced relaxation (ranging from 3.2 ± 1.1% at 0.5 Hz to 58.5 ± 2.2% at 16 Hz) was significantly decreased compared to unchallenged controls (7.1 ± 0.8% to 75.8 ± 0.7%; P < 0.05 all). In contrast to unchallenged controls, the NOS inhibitor L-NNA did not affect EFS-induced relaxation after allergen challenge, indicating that NO deficiency underlies the impaired relaxation. Remarkably, the specific arginase inhibitor nor-NOHA normalized the impaired relaxation to unchallenged control (P < 0.05 all), which effect was inhibited by L-NNA (P < 0.01 all). Moreover, the effect of nor-NOHA was mimicked by exogenous L-arginine. CONCLUSION: The results clearly demonstrate that increased arginase activity after the allergen-induced EAR contributes to a deficiency of iNANC nerve-derived NO and decreased airway smooth muscle relaxation, presumably via increased substrate competition with nNOS
Negative Parity 70-plet Baryon Masses in the 1/Nc Expansion
The masses of the negative parity SU(6) 70-plet baryons are analyzed in the
1/Nc expansion to order 1/Nc and to first order in SU(3) breaking. At this
level of precision there are twenty predictions. Among them there are the well
known Gell-Mann Okubo and equal spacing relations, and four new relations
involving SU(3) breaking splittings in different SU(3) multiplets. Although the
breaking of SU(6) symmetry occurs at zeroth order in 1/Nc, it turns out to be
small. The dominant source of the breaking is the hyperfine interaction which
is of order 1/Nc. The spin-orbit interaction, of zeroth order in 1/Nc, is
entirely fixed by the splitting between the singlet states Lambda(1405) and
Lambda(1520), and the spin-orbit puzzle is solved by the presence of other
zeroth order operators involving flavor exchange.Comment: 31 pages, 3 figure
The Family Name as Socio-Cultural Feature and Genetic Metaphor: From Concepts to Methods
A recent workshop entitled The Family Name as Socio-Cultural Feature and Genetic Metaphor: From Concepts to Methods was held in Paris in December 2010, sponsored by the French National Centre for Scientific Research (CNRS) and by the journal Human Biology. This workshop was intended to foster a debate on questions related to the family names and to compare different multidisciplinary approaches involving geneticists, historians, geographers, sociologists and social anthropologists. This collective paper presents a collection of selected communications
Electromagnetic Meson Production in the Nucleon Resonance Region
Recent experimental and theoretical advances in investigating electromagnetic
meson production reactions in the nucleon resonance region are reviewed.Comment: 75 pages, 42 figure
- …