548 research outputs found

    Infrared Observations of Hot Gas and Cold Ice toward the Low Mass Protostar Elias 29

    Get PDF
    We have obtained the full 1-200 um spectrum of the low luminosity (36 Lsun) Class I protostar Elias 29 in the Rho Ophiuchi molecular cloud. It provides a unique opportunity to study the origin and evolution of interstellar ice and the interrelationship of interstellar ice and hot core gases around low mass protostars. We see abundant hot CO and H2O gas, as well as the absorption bands of CO, CO2, H2O and ``6.85 um'' ices. We compare the abundances and physical conditions of the gas and ices toward Elias 29 with the conditions around several well studied luminous, high mass protostars. The high gas temperature and gas/solid ratios resemble those of relatively evolved high mass objects (e.g. GL 2591). However, none of the ice band profiles shows evidence for significant thermal processing, and in this respect Elias 29 resembles the least evolved luminous protostars, such as NGC 7538 : IRS9. Thus we conclude that the heating of the envelope of the low mass object Elias 29 is qualitatively different from that of high mass protostars. This is possibly related to a different density gradient of the envelope or shielding of the ices in a circumstellar disk. This result is important for our understanding of the evolution of interstellar ices, and their relation to cometary ices.Comment: 18 pages and 14 figures, accepted for publication in A&

    Detection of H2 pure rotational line emission from the GG~Tau binary system

    Get PDF
    We present the first detection of the low-lying pure rotational emission lines of H2 from circumstellar disks around T~Tauri stars, using the Short Wavelength Spectrometer on the Infrared Space Observatory. These lines provide a direct measure of the total amount of warm molecular gas in disks. The J=2->0 S(0) line at 28.218 mum and the J=3->1 S(1) line at 17.035 mum have been observed toward the double binary system GG Tau. Together with limits on the J=5->3 S(3) and J=7->5 S(5) lines, the data suggest the presence of gas at T_kin=110+-10 K with a mass of (3.6+-2.0)x10^-3 M_sol (3sigma). This amounts to ~3% of the total gas + dust mass of the circumbinary disk as imaged by millimeter interferometry, but is larger than the estimated mass of the circumstellar disk(s). Possible origins for the warm gas seen in H2 are discussed in terms of photon and wind-shock heating mechanisms of the circumbinary material, and comparisons with model calculations are made.Comment: 14 pages including 1 figure. To appear in Astrophysical Journal Letter

    ISO observations toward the reflection nebula NGC 7023: A nonequilibrium ortho- to para-H2 ratio

    Full text link
    We have observed the S(0), S(1), S(2), S(3), S(4) and S(5) rotational lines of molecular hydrogen (H2) towards the peak of the photodissociation region (PDR) associated with the reflection nebula NGC 7023. The observed H2 line ratios show that they arise in warm gas with kinetic temperatures ~300 - 700 K. However, the data cannot be fitted by an ortho- to para- (OTP) ratio of 3. An OTP ratio in the range ~1.5 - 2 is necessary to explain our observations. This is the first detection of a non-equilibrium OTP ratio measured from the H2 pure-rotational lines in a PDR. The existence of a dynamical PDR is discussed as the most likely explanation for this low OTP ratio.Comment: 4 pages, 3 figure

    Neon and Sulfur Abundances of Planetary Nebulae in the Magellanic Clouds

    Get PDF
    The chemical abundances of neon and sulfur for 25 planetary nebulae (PNe) in the Magellanic Clouds are presented. These abundances have been derived using mainly infrared data from the Spitzer Space Telescope. The implications for the chemical evolution of these elements are discussed. A comparison with similarly obtained abundances of Galactic PNe and HII regions and Magellanic Clouds HII regions is also given. The average neon abundances are 6.0x10(-5) and 2.7x10(-5) for the PNe in the Large and Small Magellanic Clouds respectively. These are ~1/3 and 1/6 of the average abundances of Galactic planetary nebulae to which we compare. The average sulfur abundances for the LMC and SMC are respectively 2.7x10(-6) and 1.0x10(-6). The Ne/S ratio (23.5) is on average higher than the ratio found in Galactic PNe (16) but the range of values in both data sets is similar for most of the objects. The neon abundances found in PNe and HII regions agree with each other. It is possible that a few (3-4) of the PNe in the sample have experienced some neon enrichment, but for two of these objects the high Ne/S ratio can be explained by their very low sulfur abundances. The neon and sulfur abundances derived in this paper are also compared to previously published abundances using optical data and photo-ionization models.Comment: 13 pages, 4 tables, 5 figures. Accepted for publication in Ap

    Water in Emission in the ISO Spectrum of the Early M Supergiant Star mu Cephei

    Full text link
    We report a detection of water in emission in the spectrum of the M2 supergiant atar mu Cep (M2Ia) observed by the Short Wavelength Spectrometer (SWS) aboard Infrared Space Observatory (ISO) and now released as the ISO Archives. The emission first appears in the 6 micron region (nu2 fundamental) and then in the 40 micron region (pure rotation lines) despite the rather strong dust emission. The intensity ratios of the emission features are far from those of the optically thin gaseous emission. Instead, we could reproduce the major observed emission features by an optically thick water sphere of the inner radius about two stellar radii (1300Rsun), Tex = 1500K, and Ncol (H2O) = 3.0E+20/cm2. This model also accounts for the H2O absorption bands in the near infrared (1.4, 1.9, and 2.7 micron) as well. The detection of water in emission provides strong constraints on the nature of water in the early M supergiant stars, and especially its origin in the outer atmosphere is confirmed against other models such as the large convective cell model. We finally confirm that the early M supergiant star is surrounded by a huge optically thick sphere of the warm water vapor, which may be referred to as MOLsphere for simplicity. Thus, the outer atmosphere of M supergiant stars should have a complicated hierarchical and/or hybrid structure with at least three major constituents including the warm MOLsphere (T about 1.0E+3K) together with the previously known hot chromosphere (T about 1.0E+4K) and cool expanding gas-dust envelope (T about 1.0E+2K).Comment: 14 pages, 5 postscript figures, to appear in ApJ

    The 35Cl/37Cl isotopic ratio in dense molecular clouds: HIFI observations of hydrogen chloride towards W3A

    Full text link
    We report on the detection with the HIFI instrument on board the Herschel satellite of the two hydrogen chloride isotopologues, H35Cl and H37Cl, towards the massive star-forming region W3A. The J=1-0 line of both species was observed with receiver 1b of the HIFI instrument at 625.9 and 624.9 GHz. The different hyperfine components were resolved. The observations were modeled with a non-local, non-LTE radiative transfer model that includes hyperfine line overlap and radiative pumping by dust. Both effects are found to play an important role in the emerging intensity from the different hyperfine components. The inferred H35Cl column density (a few times 1e14 cm^-2), and fractional abundance relative to H nuclei (~7.5e^-10), supports an upper limit to the gas phase chlorine depletion of ~200. Our best-fit model estimate of the H35Cl/H37Cl abundance ratio is ~2.1+/-0.5, slightly lower, but still compatible with the solar isotopic abundance ratio (~3.1). Since both species were observed simultaneously, this is the first accurate estimation of the [35Cl]/[37Cl] isotopic ratio in molecular clouds. Our models indicate that even for large line opacities and possible hyperfine intensity anomalies, the H35Cl and H37Cl J=1-0 integrated line-intensity ratio provides a good estimate of the 35Cl/37Cl isotopic abundance ratio.Comment: Accepted for publication in Astronomy and Astrophysics (Herschel special issue

    Superconducting resonator circuits at frequencies above the gap frequency

    Get PDF
    The frequency response of three superconductive niobium resonating circuits, formed by a Nb microstrip and a Nb tunnel junction, is measured and analyzed at frequencies above the superconducting gap frequency. The circuits are placed in a waveguide system and the frequency response is determined with a Fourier transform spectrometer. The calculated and measured resonance frequencies and bandwidths are in good agreement with the extreme anomalous limit of the Mattis–Bardeen theory on the anomalous skin effect in superconductors [D.C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958)]. The observed loss is higher than predicted by this theory, in agreement with previous observations on Nb films. The use of other materials for striplines as tuning circuits for heterodyne superconducting tunnel junction mixers is analyzed

    ISO observations of far-infrared rotational emission lines of water vapor toward the supergiant star VY Canis Majoris

    Get PDF
    We report the detection of numerous far-infrared emission lines of water vapor toward the supergiant star VY Canis Majoris. A 29.5 - 45 micron grating scan of VY CMa, obtained using the Short Wavelength Spectrometer (SWS) of the Infrared Space Observatory (ISO) at a spectral resolving power of approximately 2000, reveals at least 41 spectral features due to water vapor that together radiate a total luminosity ~ 25 solar luminosities. In addition to pure rotational transitions within the ground vibrational state, these features include rotational transitions within the (010) excited vibrational state. The spectrum also shows the doublet Pi 1/2 (J=5/2) <-- doublet Pi 3/2 (J=3/2) OH feature near 34.6 micron in absorption. Additional SWS observations of VY CMa were carried out in the instrument's Fabry-Perot mode for three water transitions: the 7(25)-6(16) line at 29.8367 micron, the 4(41)-3(12) line 31.7721 micron, and the 4(32)-3(03) line at 40.6909 micron. The higher spectral resolving power of approximately 30,000 thereby obtained permits the line profiles to be resolved spectrally for the first time and reveals the "P Cygni" profiles that are characteristic of emission from an outflowing envelope.Comment: 11 pages (inc. 2 figures), LaTeX, uses aaspp4.sty, accepted for publication in ApJ Letter

    The origin of short-lived radionuclides and the astrophysical environment of solar system formation

    Full text link
    Based on early solar system abundances of short-lived radionuclides (SRs), such as 26^{26}Al (T1/2=0.74_{1/2} = 0.74 Myr) and 60^{60}Fe (T1/2=1.5_{1/2} = 1.5 Myr), it is often asserted that the Sun was born in a large stellar cluster, where a massive star contaminated the protoplanetary disk with freshly nucleosynthesized isotopes from its supernova (SN) explosion. To account for the inferred initial solar system abundances of short-lived radionuclides, this supernova had to be close (∌\sim 0.3 pc) to the young (â©œ\leqslant 1 Myr) protoplanetary disk. Here we show that massive star evolution timescales are too long, compared to typical timescales of star formation in embedded clusters, for them to explode as supernovae within the lifetimes of nearby disks. This is especially true in an Orion Nebular Cluster (ONC)-type of setting, where the most massive star will explode as a supernova ∌\sim 5 Myr after the onset of star formation, when nearby disks will have already suffered substantial photoevaporation and/or formed large planetesimals. We quantify the probability for {\it any} protoplanetary disk to receive SRs from a nearby supernova at the level observed in the early solar system. Key constraints on our estimate are: (1) SRs have to be injected into a newly formed (â©œ\leqslant 1 Myr) disk, (2) the disk has to survive UV photoevaporation, and (3) the protoplanetary disk must be situated in an enrichment zone permitting SR injection at the solar system level without disk disruption. The probability of protoplanetary disk contamination by a supernova ejecta is, in the most favorable case, 3 ×\times 10−3^{-3}
    • 

    corecore