The chemical abundances of neon and sulfur for 25 planetary nebulae (PNe) in
the Magellanic Clouds are presented. These abundances have been derived using
mainly infrared data from the Spitzer Space Telescope. The implications for the
chemical evolution of these elements are discussed. A comparison with similarly
obtained abundances of Galactic PNe and HII regions and Magellanic Clouds HII
regions is also given. The average neon abundances are 6.0x10(-5) and
2.7x10(-5) for the PNe in the Large and Small Magellanic Clouds respectively.
These are ~1/3 and 1/6 of the average abundances of Galactic planetary nebulae
to which we compare. The average sulfur abundances for the LMC and SMC are
respectively 2.7x10(-6) and 1.0x10(-6). The Ne/S ratio (23.5) is on average
higher than the ratio found in Galactic PNe (16) but the range of values in
both data sets is similar for most of the objects. The neon abundances found in
PNe and HII regions agree with each other. It is possible that a few (3-4) of
the PNe in the sample have experienced some neon enrichment, but for two of
these objects the high Ne/S ratio can be explained by their very low sulfur
abundances. The neon and sulfur abundances derived in this paper are also
compared to previously published abundances using optical data and
photo-ionization models.Comment: 13 pages, 4 tables, 5 figures. Accepted for publication in Ap