6,954 research outputs found

    Adapting and disseminating effective public health interventions in another country: towards a systematic approach.

    Get PDF
    Background: Public health interventions that have proven effective in one country, are often adapted and disseminated in other countries. However, the process by which effective interventions are chosen for adaptation and dissemination in another country is often not conducted systematically. Methods: We propose a more systematic approach and describe the main steps that have to be taken in the assessment of the usefulness of effective interventions in another national context. Results: The following steps are proposed. Step 0: Point out the most relevant areas in public health (this is a collaborative effort by policy makers, scientists and practitioners). Step 1: Identification of potentially effective interventions (through systematic literature searches). Step 2: Assessing the levels of evidence and grades of recommendation for adoption. Step 3: Can the results of the trials be generalized to the national situation? Step 4: Can the intervention be implemented in the national situation? Conclusion: A more systematic approach to the adaptation and dissemination can be adopted. The basic steps described should be worked out in more detail before they can be used in practice

    Effects of quasiparticle tunneling in a circuit-QED realization of a strongly driven two-level system

    Full text link
    We experimentally and theoretically study the frequency shift of a driven cavity coupled to a superconducting charge qubit. In addition to previous studies, we here also consider drive strengths large enough to energetically allow for quasiparticle creation. Quasiparticle tunneling leads to the inclusion of more than two charge states in the dynamics. To explain the observed effects, we develop a master equation for the microwave dressed charge states, including quasiparticle tunneling. A bimodal behavior of the frequency shift as a function of gate voltage can be used for sensitive charge detection. However, at weak drives the charge sensitivity is significantly reduced by non-equilibrium quasiparticles, which induce transitions to a non-sensitive state. Unexpectedly, at high enough drives, quasiparticle tunneling enables a very fast relaxation channel to the sensitive state. In this regime, the charge sensitivity is thus robust against externally injected quasiparticles and the desired dynamics prevail over a broad range of temperatures. We find very good agreement between theory and experiment over a wide range of drive strengths and temperatures.Comment: 25 pages, 7 figure

    Near-Field Scanning Microwave Microscopy in the Single Photon Regime

    Get PDF
    The microwave properties of nano-scale structures are important in a wide variety of applications in quantum technology. Here we describe a low-power cryogenic near-field scanning microwave microscope (NSMM) which maintains nano-scale dielectric contrast down to the single microwave photon regime, up to 10910^{9} times lower power than in typical NSMMs. We discuss the remaining challenges towards developing nano-scale NSMM for quantum coherent interaction with two-level systems as an enabling tool for the development of quantum technologies in the microwave regime

    Photography of ground sites from AAP orbit

    Get PDF
    Photography of ground sites from Apollo Applications Progra

    Dynamic parity recovery in a strongly driven Cooper-pair box

    Get PDF
    We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stuckelberg (LZS) interference structure of a longitudinally driven two-level system. For even stronger drives we observe a significant change in the LZS pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.Comment: 5 pages, 4 figure

    Feasibility of a dose-intensive CMF regimen with granulocyte colony-stimulating factor as adjuvant therapy in premenopausal patients with node-positive breast cancer

    Get PDF
    Our aim was to study the feasibility of an intensified intravenous CMF (cyclophosphamide, methotrexate and 5-fluorouracil) schedule with the aim to escalate dose intensity (DI). Twenty-three premenopausal breast cancer patients received 6 cycles of adjuvant CMF intravenously on days 1 and 8 every 3 weeks and granulocyte colony-stimulating factor days 9–18. Endpoints were DI and toxicity. Twenty-one out of 23 patients (91%) received the projected total dose and reached ≄ 85% of the projected DI. Compared to ‘classical’ CMF, all patients reached ≄ 111% DI. Nine patients received the planned schedule without delay. Thirteen patients (57%) were treated for infection and four patients (17%) were hospitalized for febrile neutropenia. Twelve patients received red blood cell transfusions (52%). Radiation therapy (n= 6) had no adverse impact on dose intensity or haematological toxicity. This dose-intensified CMF schedule was accompanied by enhanced haematological toxicity with clinical sequelae, namely fever, intravenous antibiotics and red blood cell transfusions, but allows a high dose intensity in a majority of patients. © 2000 Cancer Research Campaig

    An effective method to compute closure ordering for nilpotent orbits of Ξ\theta-representations

    Get PDF
    We develop an algorithm for computing the closure of a given nilpotent G0G_0-orbit in \g_1, where \g_1 and G0G_0 are coming from a Z\Z or a Z/mZ\Z/m\Z-grading \g= \bigoplus \g_i of a simple complex Lie algebra \g
    • 

    corecore