1,116 research outputs found

    Chaos and Complexity of quantum motion

    Full text link
    The problem of characterizing complexity of quantum dynamics - in particular of locally interacting chains of quantum particles - will be reviewed and discussed from several different perspectives: (i) stability of motion against external perturbations and decoherence, (ii) efficiency of quantum simulation in terms of classical computation and entanglement production in operator spaces, (iii) quantum transport, relaxation to equilibrium and quantum mixing, and (iv) computation of quantum dynamical entropies. Discussions of all these criteria will be confronted with the established criteria of integrability or quantum chaos, and sometimes quite surprising conclusions are found. Some conjectures and interesting open problems in ergodic theory of the quantum many problem are suggested.Comment: 45 pages, 22 figures, final version, at press in J. Phys. A, special issue on Quantum Informatio

    GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP

    Full text link
    Full detector simulation was among the largest CPU consumer in all CERN experiment software stacks for the first two runs of the Large Hadron Collider (LHC). In the early 2010's, the projections were that simulation demands would scale linearly with luminosity increase, compensated only partially by an increase of computing resources. The extension of fast simulation approaches to more use cases, covering a larger fraction of the simulation budget, is only part of the solution due to intrinsic precision limitations. The remainder corresponds to speeding-up the simulation software by several factors, which is out of reach using simple optimizations on the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport codes in order to make them benefit from fine-grained parallelism features such as vectorization, but also from increased code and data locality. This paper presents extensively the results and achievements of this R&D, as well as the conclusions and lessons learnt from the beta prototype.Comment: 34 pages, 26 figures, 24 table

    Surface Structure of Liquid Metals and the Effect of Capillary Waves: X-ray Studies on Liquid Indium

    Full text link
    We report x-ray reflectivity (XR) and small angle off-specular diffuse scattering (DS) measurements from the surface of liquid Indium close to its melting point of 156156^\circC. From the XR measurements we extract the surface structure factor convolved with fluctuations in the height of the liquid surface. We present a model to describe DS that takes into account the surface structure factor, thermally excited capillary waves and the experimental resolution. The experimentally determined DS follows this model with no adjustable parameters, allowing the surface structure factor to be deconvolved from the thermally excited height fluctuations. The resulting local electron density profile displays exponentially decaying surface induced layering similar to that previously reported for Ga and Hg. We compare the details of the local electron density profiles of liquid In, which is a nearly free electron metal, and liquid Ga, which is considerably more covalent and shows directional bonding in the melt. The oscillatory density profiles have comparable amplitudes in both metals, but surface layering decays over a length scale of 3.5±0.63.5\pm 0.6 \AA for In and 5.5±0.45.5\pm 0.4 \AA for Ga. Upon controlled exposure to oxygen, no oxide monolayer is formed on the liquid In surface, unlike the passivating film formed on liquid Gallium.Comment: 9 pages, 5 figures; submitted to Phys. Rev.

    Power and the durability of poverty: a critical exploration of the links between culture, marginality and chronic poverty

    Get PDF

    Multiplicity and Pseudorapidity Distributions of Charged Particles and Photons at Forward Pseudorapidity in Au + Au Collisions at sqrt{s_NN} = 62.4 GeV

    Get PDF
    We present the centrality dependent measurement of multiplicity and pseudorapidity distributions of charged particles and photons in Au + Au collisions at sqrt{s_NN} = 62.4 GeV. The charged particles and photons are measured in the pseudorapidity region 2.9 < eta < 3.9 and 2.3 < eta < 3.7, respectively. We have studied the scaling of particle production with the number of participating nucleons and the number of binary collisions. The photon and charged particle production in the measured pseudorapidity range has been shown to be consistent with energy independent limiting fragmentation behavior. The photons are observed to follow a centrality independent limiting fragmentation behavior while for the charged particles it is centrality dependent. We have carried out a comparative study of the pseudorapidity distributions of positively charged hadrons, negatively charged hadrons, photons, pions, net protons in nucleus--nucleus collisions and pseudorapidity distributions from p+p collisions. From these comparisons we conclude that baryons in the inclusive charged particle distribution are responsible for the observed centrality dependence of limiting fragmentation. The mesons are found to follow an energy independent behavior of limiting fragmentation while the behavior of baryons seems to be energy dependent.Comment: 17 pages and 20 figure

    The emergence and current performance of a health research system: lessons from Guinea Bissau

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about how health research systems (HRS) in low-income countries emerge and evolve over time, and how this process relates to their performance. Understanding how HRSs emerge is important for the development of well functioning National Health Research Systems (NHRS). The aim of this study was to assess how the HRS in Guinea Bissau has emerged and evolved over time and how the present system functions.</p> <p>Methods</p> <p>We used a qualitative case-study methodology to explore the emergence and current performance of the HRS, using the NHRS framework. We reviewed documents and carried out 39 in-depth interviews, ranging from health research to policy and practice stakeholders. Using an iterative approach, we undertook a thematic analysis of the data.</p> <p>Results</p> <p>The research practices in Guinea Bissau led to the emergence of a HRS with both local and international links and strong dependencies on international partners and donors. The post-colonial, volatile and resource-dependent context, changes in donor policies, training of local researchers and nature of the research findings influenced how the HRS evolved. Research priorities have mostly been set by 'expatriate' researchers and focused on understanding and reducing child mortality. Research funding is almost exclusively provided by foreign donors and international agencies. The training of Guinean researchers started in the mid-nineties and has since reinforced the links with the health system, broadened the research agenda and enhanced local use of research. While some studies have made an important contribution to global health, the use of research within Guinea Bissau has been constrained by the weak and donor dependent health system, volatile government, top-down policies of international agencies, and the controversial nature of some of the research findings.</p> <p>Conclusions</p> <p>In Guinea Bissau a de facto 'system' of research has emerged through research practices and co-evolving national and international research and development dynamics. If the aim of research is to contribute to local decision making, it is essential to modulate the emerged system by setting national research priorities, aligning funding, building national research capacity and linking research to decision making processes. Donors and international agencies can contribute to this process by coordinating their efforts and aligning to national priorities.</p

    Strangelet search at RHIC

    Full text link
    Two position sensitive Shower Maximum Detector (SMDs) for Zero-Degree Calorimeters (ZDCs) were installed by STAR before run 2004 at both upstream and downstream from the interaction point along the beam axis where particles with small rigidity are swept away by strong magnetic field. The ZDC-SMDs provides information about neutral energy deposition as a function of transverse position in ZDCs. We report the preliminary results of strangelet search from a triggered data-set sampling 100 million Au+Au collisions at top RHIC energy.Comment: Strange Quark Matter 2004 conference proceedin
    corecore