101 research outputs found

    Imaging of electric and magnetic fields near plasmonic nanowires

    Get PDF
    Near-field imaging is a powerful tool to investigate the complex structure of light at the nanoscale. Recent advances in near-field imaging have indicated the possibility for the complete reconstruction of both electric and magnetic components of the evanescent field. Here we study the electro-magnetic field structure of surface plasmon polariton waves propagating along subwavelength gold nanowires by performing phase- and polarization-resolved near-field microscopy in collection mode. By applying the optical reciprocity theorem, we describe the signal collected by the probe as an overlap integral of the nanowire’s evanescent field and the probe’s response function. As a result, we find that the probe’s sensitivity to the magnetic field is approximately equal to its sensitivity to the electric field. Through rigorous modeling of the nanowire mode as well as the aperture probe response function, we obtain a good agreement between experimentally measured signals and a numerical model. Our findings provide a better understanding of aperture-based near-field imaging of the nanoscopic plasmonic and photonic structures and are helpful for the interpretation of future near-field experiments

    Imaging of electric and magnetic fields near plasmonic nanowires.

    Full text link
    Near-field imaging is a powerful tool to investigate the complex structure of light at the nanoscale. Recent advances in near-field imaging have indicated the possibility for the complete reconstruction of both electric and magnetic components of the evanescent field. Here we study the electro-magnetic field structure of surface plasmon polariton waves propagating along subwavelength gold nanowires by performing phase- and polarization-resolved near-field microscopy in collection mode. By applying the optical reciprocity theorem, we describe the signal collected by the probe as an overlap integral of the nanowire's evanescent field and the probe's response function. As a result, we find that the probe's sensitivity to the magnetic field is approximately equal to its sensitivity to the electric field. Through rigorous modeling of the nanowire mode as well as the aperture probe response function, we obtain a good agreement between experimentally measured signals and a numerical model. Our findings provide a better understanding of aperture-based near-field imaging of the nanoscopic plasmonic and photonic structures and are helpful for the interpretation of future near-field experiments

    Novel urinary biomarkers for the detection of bladder cancer: A systematic review

    Get PDF
    BACKGROUND: Urinary biomarkers for the diagnosis of bladder cancer represents an area of considerable research which has been tested in both patients presenting with haematuria and non-muscle invasive bladder cancer patients requiring surveillance cystoscopy. In this systematic review, we identify and appraise the diagnostic sensitive and specificity of reported novel biomarkers of different 'omic' class and highlight promising biomarkers investigated to date. METHODS: A MEDLINE/Pubmed systematic search was performed between January 2013 and July 2017 using the following keywords: (bladder cancer OR transitional cell carcinoma OR urothelial cell carcinoma) AND (detection OR diagnosis) AND urine AND (biomarker OR assay). All studies had a minimum of 20 patients in both bladder cancer and control arms and reported sensitivity and/or specificity and/or receiver operating characteristics (ROC) curve. QUADAS-2 tool was used to assess risk of bias and applicability of studies. The search protocol was registered in the PROSPERO database (CRD42016049918). RESULTS: Systematic search yielded 115 reports were included for analysis. In single target biomarkers had a sensitivity of 2-94%, specificity of 46-100%, positive predictive value (PPV) of 47-100% and negative predictive value (NPV) of 21-94%. Multi-target biomarkers achieved a sensitivity of 24-100%, specificity of 48-100%, PPV of 42-95% and NPV of 32-100%. 50 studies achieved a sensitivity and specificity of ≥80%. Protein (n = 59) and transcriptomic (n = 21) biomarkers represents the most studied biomarkers. Multi-target biomarker panels had a better diagnostic accuracy compared to single biomarker targets. Urinary cytology with urinary biomarkers improved the diagnostic ability of the biomarker. The sensitivity and specificity of biomarkers were higher for primary diagnosis compared to patients in the surveillance setting. Most studies were case control studies and did not have a predefined threshold to determine a positive test result indicating a possible risk of bias. CONCLUSION: This comprehensive systematic review provides an update on urinary biomarkers of different 'omic' class and highlights promising biomarkers. Few biomarkers achieve a high sensitivity and negative predictive value. Such biomarkers will require external validation in a prospective observational setting before adoption in clinical practice

    Neurophysiological modeling of bladder afferent activity in the rat overactive bladder model

    Get PDF
    The overactive bladder (OAB) is a syndrome-based urinary dysfunction characterized by “urgency, with or without urge incontinence, usually with frequency and nocturia”. Earlier we developed a mathematical model of bladder nerve activity during voiding in anesthetized rats and found that the nerve activity in the relaxation phase of voiding contractions was all afferent. In the present study, we applied this mathematical model to an acetic acid (AA) rat model of bladder overactivity to study the sensitivity of afferent fibers in intact nerves to bladder pressure and volume changes. The afferent activity in the filling phase and the slope, i.e., the sensitivity of the afferent fibers to pressure changes in the post-void relaxation phase, were found to be significantly higher in AA than in saline measurements, while the offset (nerve activity at pressure ~0) and maximum pressure were comparable. We have thus shown, for the first time, that the sensitivity of afferent fibers in the OAB can be studied without cutting nerves or preparation of single fibers. We conclude that bladder overactivity induced by AA in rats is neurogenic in origin and is caused by increased sensitivity of afferent sensors in the bladder wall

    Increased circulating ANG II and TNF-α represents important risk factors in obese Saudi adults with hypertension irrespective of diabetic status and BMI

    Get PDF
    Central adiposity is a significant determinant of obesity-related hypertension risk, which may arise due to the pathogenic inflammatory nature of the abdominal fat depot. However, the influence of pro-inflammatory adipokines on blood pressure in the obese hypertensive phenotype has not been well established in Saudi subjects. As such, our study investigated whether inflammatory factors may represent useful biomarkers to delineate hypertension risk in a Saudi cohort with and without hypertension and/or diabetes mellitus type 2 (DMT2). Subjects were subdivided into four groups: healthy lean controls (age: 47.9±5.1 yr; BMI: 22.9±2.1 Kg/m2), non-hypertensive obese (age: 46.1±5.0 yr; BMI: 33.7±4.2 Kg/m2), hypertensive obese (age: 48.6±6.1 yr; BMI: 36.5±7.7 Kg/m2) and hypertensive obese with DMT2 (age: 50.8±6.0 yr; BMI: 35.3±6.7 Kg/m2). Anthropometric data were collected from all subjects and fasting blood samples were utilized for biochemical analysis. Serum angiotensin II (ANG II) levels were elevated in hypertensive obese (p<0.05) and hypertensive obese with DMT2 (p<0.001) compared with normotensive controls. Systolic blood pressure was positively associated with BMI (p<0.001), glucose (p<0.001), insulin (p<0.05), HOMA-IR (p<0.001), leptin (p<0.01), TNF-α (p<0.001) and ANG II (p<0.05). Associations between ANG II and TNF-α with systolic blood pressure remained significant after controlling for BMI. Additionally CRP (p<0.05), leptin (p<0.001) and leptin/adiponectin ratio (p<0.001) were also significantly associated with the hypertension phenotype. In conclusion our data suggests that circulating pro-inflammatory adipokines, particularly ANG II and, TNF-α, represent important factors associated with a hypertension phenotype and may directly contribute to predicting and exacerbating hypertension risk

    Epigenetics Markers of Metastasis and HPV-Induced Tumorigenesis in Penile Cancer

    Get PDF
    Purpose: Penile cancer is a rare malignancy in the developed world with just more than 1,600 new cases diagnosed in the United States per year; however, the incidence is much higher in developing countries. Although HPV is known to contribute to tumorigenesis, little is known about the genetic or epigenetic alterations defining penile cancer. / Experimental Design: Using high-density genome-wide methylation arrays, we have identified epigenetic alterations associated with penile cancer. Q-MSP was used to validate lymph node metastasis markers in 50 cases. A total of 446 head and neck squamous cell carcinoma (HNSCC) and cervical squamous cell carcinoma (CESCC) samples were used to validate HPV-associated epigenetic alterations. / Results: We defined 6,933 methylation variable positions (MVP) between normal and tumor tissue, which includes 997 hypermethylated differentially methylated regions associated with tumor supressor genes, including CDO1, AR1, and WT1. Analysis of penile cancer tumors identified a 4 gene epi-signature which accurately predicted lymph node metastasis in an independent cohort (AUC of 89%). Finally, we explored the epigenetic alterations associated with penile cancer HPV infection and defined a 30 loci lineage-independent HPV specific epi-signature which predicts HPV status and survival in independent HNSCC, CESC cohorts. Epi-signature–negative patients have a significantly worse overall survival [HNSCC P = 0.00073; 95% confidence interval (CI), 0.021–0.78; CESC P = 0.0094; HR = 3.91, 95% CI = 0.13–0.78], HPV epi-signature is a better predictor of survival than HPV status alone. / Conclusions: These data demonstrate for the first time genome-wide epigenetic events involved in an aggressive penile cancer phenotype and define the epigenetic alterations common across multiple HPV-driven malignancies

    UroMark-a urinary biomarker assay for the detection of bladder cancer.

    Get PDF
    BACKGROUND: Bladder cancer (BC) is one of the most common cancers in the western world and ranks as the most expensive to manage, due to the need for cystoscopic examination. BC shows frequent changes in DNA methylation, and several studies have shown the potential utility of urinary biomarkers by detecting epigenetic alterations in voided urine. The aim of this study is to develop a targeted bisulfite next-generation sequencing assay to diagnose BC from urine with high sensitivity and specificity. RESULTS: We defined a 150 CpG loci biomarker panel from a cohort of 86 muscle-invasive bladder cancers and 30 normal urothelium. Based on this panel, we developed the UroMark assay, a next-generation bisulphite sequencing assay and analysis pipeline for the detection of bladder cancer from urinary sediment DNA. The 150 loci UroMark assay was validated in an independent cohort (n = 274, non-cancer (n = 167) and bladder cancer (n = 107)) voided urine samples with an AUC of 97%. The UroMark classifier sensitivity of 98%, specificity of 97% and NPV of 97% for the detection of primary BC was compared to non-BC urine. CONCLUSIONS: Epigenetic urinary biomarkers for detection of BC have the potential to revolutionise the management of this disease. In this proof of concept study, we show the development and utility of a novel high-throughput, next-generation sequencing-based biomarker for the detection of BC-specific epigenetic alterations in urine

    Scale-invariance of galaxy clustering

    Full text link
    Some years ago we proposed a new approach to the analysis of galaxy and cluster correlations based on the concepts and methods of modern statistical Physics. This led to the surprising result that galaxy correlations are fractal and not homogeneous up to the limits of the available catalogs. The usual statistical methods, which are based on the assumption of homogeneity, are therefore inconsistent for all the length scales probed so far, and a new, more general, conceptual framework is necessary to identifythe real physical properties of these structures. In the last few years the 3-d catalogs have been significatively improved and we have extended our methods to the analysis of number counts and angular catalogs. This has led to a complete analysis of all the available data that we present in this review. The result is that galaxy structures are highly irregular and self-similar: all the available data are consistent with each other and show fractal correlations (with dimension D2D \simeq 2) up to the deepest scales probed so far (1000 \hmp) and even more as indicated from the new interpretation of the number counts. The evidence for scale-invariance of galaxy clustering is very strong up to 150 \hmp due to the statistical robustness of the data but becomes progressively weaker (statistically) at larger distances due to the limited data. In These facts lead to fascinating conceptual implications about our knowledge of the universe and to a new scenario for the theoretical challenge in this field.Comment: Latex file 165 pages, 106 postscript figures. This paper is also available at http://www.phys.uniroma1.it/DOCS/PIL/pil.html To appear in Physics Report (Dec. 1997
    corecore