1,042 research outputs found

    Entropy generation in a model of reversible computation

    Get PDF
    We present a model in which, due to the quantum nature of the signals controlling the implementation time of successive unitary computational steps, \emph{physical} irreversibility appears in the execution of a \emph{logically} reversible computation.Comment: 13 pages, 6 figure

    Time-dependent density functional theory for open spin chains

    Get PDF
    The application of methods of time-dependent density functional theory (TDDFT) to systems of qubits provided the interesting possibility of simulating an assigned Hamiltonian evolution by means of an auxiliary Hamiltonian having different two-qubit interactions and hence a possibly simpler wave function evolution. In this note we extend these methods to some instances of Lindblad evolution of a spin chain.Comment: 11 pages, 6 figure

    Quantum annealing and the Schr\"odinger-Langevin-Kostin equation

    Full text link
    We show, in the context of quantum combinatorial optimization, or quantum annealing, how the nonlinear Schr\"odinger-Langevin-Kostin equation can dynamically drive the system toward its ground state. We illustrate, moreover, how a frictional force of Kostin type can prevent the appearance of genuinely quantum problems such as Bloch oscillations and Anderson localization which would hinder an exhaustive search.Comment: 5 pages, 4 figures. To appear on Physical Review

    Speed and entropy of an interacting continuous time quantum walk

    Get PDF
    We present some dynamic and entropic considerations about the evolution of a continuous time quantum walk implementing the clock of an autonomous machine. On a simple model, we study in quite explicit terms the Lindblad evolution of the clocked subsystem, relating the evolution of its entropy to the spreading of the wave packet of the clock. We explore possible ways of reducing the generation of entropy in the clocked subsystem, as it amounts to a deficit in the probability of finding the target state of the computation. We are thus lead to examine the benefits of abandoning some classical prejudice about how a clocking mechanism should operate.Comment: 25 pages, 14 figure

    Grover's algorithm on a Feynman computer

    Get PDF
    We present an implementation of Grover's algorithm in the framework of Feynman's cursor model of a quantum computer. The cursor degrees of freedom act as a quantum clocking mechanism, and allow Grover's algorithm to be performed using a single, time-independent Hamiltonian. We examine issues of locality and resource usage in implementing such a Hamiltonian. In the familiar language of Heisenberg spin-spin coupling, the clocking mechanism appears as an excitation of a basically linear chain of spins, with occasional controlled jumps that allow for motion on a planar graph: in this sense our model implements the idea of "timing" a quantum algorithm using a continuous-time random walk. In this context we examine some consequences of the entanglement between the states of the input/output register and the states of the quantum clock

    In vitro characterization of iridoid and phenylethanoid glycosides from Cistanche phelypaea for nutraceutical and pharmacological applications

    Get PDF
    "Desert hyacinths" are a remarkable group of parasitic plants belonging to genus Cistanche, including more than 20 accepted species typically occurring in deserts or coastal dunes parasitizing roots of shrubs. Several Cistanche species have long been a source of traditional herbal medicine or food, being C. deserticola and C. tubulosa the most used in China. This manuscript reports the isolation and identification of some phenylethanoid and iridoid glycosides, obtained from the hydroalcoholic extract of C. phelypaea collected in Spain. The present study aims to characterize the antioxidant activity of C. phelypaea metabolites in the light of their application in nutraceutical and cosmeceutical industries and the effect of acetoside, the most abundant metabolite in C. phelypaea extract, on human keratinocyte and pluripotent stem cell proliferation and differentiation. Our study demonstrated that acetoside, besides its strong antioxidant potential, can preserve the proliferative potential of human basal keratinocytes and the stemness of mesenchymal progenitors necessary for tissue morphogenesis and renewal. Therefore, acetoside can be of practical relevance for the clinical application of human stem cell cultures in tissue engineering and regenerative medicine

    Systemic amyloidosis due to unknown multiple myeloma in small bowel pseudo-obstruction: case report

    Get PDF
    Amyloidosis is a pathologic diagnosis characterized by extracellular deposition of insoluble protein fibrils in various organs and tissues. There are two main forms of amyloidosis, primary amyloidosis, and secondary amyloidosis. Gastrointestinal involvement is common in both amyloidosis forms. We describe the case of a 78-year-old woman taken to the operating room for small bowel obstruction, found to have pseudo-obstruction and enteritis. Exploratory laparotomy revealed gastric mass and histological examen showed extensive amyloid deposition consistent with amyloidosis. Hematological evaluation revealed unknown multiple myeloma. This case report and literature data suggest to perform a hematological examination in patients with amyloidosis diagnosis to exclude a multiple myeloma or other plasma cell disorder

    Zero degree Cherenkov calorimeters for the ALICE experiment

    Get PDF
    International audienceThe collision centrality in the ALICE experiment will be determined by the Zero Degree Calorimeters (ZDCs) that will measure the spectator nucleons energy in heavy ion collisions. The ZDCs detect the Cherenkov light produced by the fast particles in the shower that cross the quartz fibers, acting as the active material embedded in a dense absorber matrix. Test beam results of the calorimeters are presented
    • …
    corecore