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Abstract
We present some dynamic and entropic considerations about the evolution of
a continuous time quantum walk implementing the clock of an autonomous
machine. On a simple model, we study in quite explicit terms the Lindblad
evolution of the clocked subsystem, relating the evolution of its entropy to
the spreading of the wave packet of the clock. We explore possible ways of
reducing the generation of entropy in the clocked subsystem, as it amounts to a
deficit in the probability of finding the target state of the computation. We are
thus led to examine the benefits of abandoning some classical prejudice about
how a clocking mechanism should operate.

PACS numbers: 03.67.Lx, 03.67.Hk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We study a model of quantum computation originally due to Feynman [10], in which the
evolution of the quantum register is controlled by an auxiliary clock or cursor register.
Feynman pointed out the computational relevance, for such a system, of a Hamiltonian of
the form

H = −λ

2

∑
x,y∈G

U(x, y; σ)τ+(y)τ−(x) + h.c. (1.1)

by showing that the CCNOT primitive (and therefore a universal quantum computer) can be
implemented by a suitable choice of the graph G and of the dependence on the register spins σ of
the dynamical variables U which couple the cursor spin creation and annihilation operators τ±.
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A general architecture emerges from the above model in which an excitation of the τ
field performs a quantum walk on a planar graph, the basic events being the flipping of a σ

spin determined by the flowing of the cursor current (the NOT primitive) and the conditional
choice, determined by the state of a σ qubit, of the flow of the cursor along alternative edges
of the graph (the SWITCH primitive).

It is to the clock subsystem that we devote most of our attention in this paper, contributing
an explicitly solvable toy model to the long-standing exploration [27] of the quantum
limitations of time measurement (for a discussion of the foundational nature of this problem
and for extensive updated references, see [12]). We study, furthermore, by frankly heuristic
numerical means when necessary, variations on the theme of our toy model, with the purpose of
gaining and sharing experience on a problem (optimizing the performance of a quantum clock)
that might become of practical relevance in studying ballistic computation on nanostructures
[3, 17].

The dynamics under the Hamiltonian (1.1) was examined by Peres [25] on a linear chain
with edges between nearest-neighbour sites, with the U’s taken to be numerical functions of
the positions; equivalently stated, the dynamics was studied along the linear chain of logical
successors of an initial register state. Peres showed, in the suggestive terminology of the more
recent [7], that unit fidelity could be achieved in the transfer of a state along such a linear chain
by suitable engineering of the coupling constants U.

Interest in the case in which the U’s are numerical functions (as opposed to matrices
acting on additional spins) has been revived by the success of the quantum walk paradigm
[5]. In [7] the graph is considered in its all important role as a wire able to spatially transfer
a single-spin quantum state; in [1] the interesting possibility is examined of performing the
mirror inversion of a many-spin state.

For a recent presentation of the full model (1.1), which we call an interacting XY system,
we refer to [8], where particular attention is paid to the role of additional controlling spins in
implementing successive visits to selected parts of the graph in iterated computations (quantum
subroutines) and in the storage of results in telomeric chains.

In this paper, we examine an explicitly solvable, yet computationally non-trivial, instance
of the Hamiltonian (1.1), paying specific attention to non-positional observables of the system:
our main concerns will be speed (of computation) and entropy (of controlled and/or controlling
subsystem). We also consider the observable number of particles (agents performing a
quantum walk along the XY chain), and discuss the interest and limitations of the proposal of
a multi-hand quantum clock as a substitute for the loops implementing iterated applications
of quantum subroutines.

The paper is organized as follows. In section 2, we present the model and establish our
notation. In section 3, we relate the speed of computation to the group velocity of the motion
of the cursor wave packet along the graph. In section 4, we discuss the build-up of entropy
in the clocked subsystem because of the spreading of the wave packet of the clocking agent.
An outline of possible choices of the initial form of this wave packet bringing such entropy
build-up close to a minimum is given in section 5. Section 6 examines the possible interest of
multiagent spin networks. Section 7 is devoted to conclusions and outlook.

2. The model

The model we consider consists of two functionally distinct parts, the input/output register
and the clock or cursor, and evolves as an autonomous system under the sole effect of its initial
state not being an eigenstate of the Hamiltonian of the composite system.
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Let |R(1)〉 ∈ Hregister be the initial state of the input/output register. Set

d = dim(Hregister). (2.1)

Let U1, U2, . . . , UN−1 be the unitary operators representing the successive primitive steps of
the computation to be performed. Suppose, namely, that the goal of the computation is to
transform the input state |R(1)〉 into the output state |R(N)〉 = UN−1 · · · U2 · U1|R(1)〉 by
visiting the successive intermediate states

|R(x)〉 = Ux−1|R(x − 1)〉, 1 < x < N. (2.2)

Following the approach of [10], we model the clocking mechanism, which sequentially applies
the transformations U1, U2, . . . , UN−1 to the register, with a quantum-mechanical system, the
cursor.

We call Hcursor the s-dimensional (s � N) state space of this system and refer it to a
selected orthonormal basis |C(1)〉, |C(2)〉, . . . , |C(s)〉. It will help the intuition, and will
explain the notation used below, to think of an explicit implementation of the cursor by s
spin-1/2 particles and to think of the state |C(x)〉 as obtained by flipping ‘up’ the spin in
position x with respect to the ‘all down’ reference state.

We suppose that the state of the overall system, the machine, evolves in the Hilbert space
Hmachine = Hregister ⊗ Hcursor under the action of a Hamiltonian of the form

H = −λ

2

s−1∑
x=1

Ux ⊗ |C(x + 1)〉〈C(x)| + U−1
x ⊗ |C(x)〉〈C(x + 1)|. (2.3)

Note that only U1, U2, . . . , UN−1 are assigned by the algorithm we are interested in;
UN, . . . , Us−1 are to be assigned as a part of the description of the clocking mechanism.

For instance, [2] presents the case in which UN, . . . , Us−1 = Ir , the identity in Hregister,
and shows the role of the cursor sites N, . . . , s as a storage mechanism of the output |R(N)〉.

An alternative point of view was taken in some of the numerical examples of [8], motivated
by Grover’s algorithm: one may suppose all of the Ux to coincide, in such a context, with
Grover’s estimation · oracle step G, and study the effect of applying G more than the optimal
number N − 1 of times.

This point of view will be taken also in some numerical examples of this paper, where we
focus our attention on a Hamiltonian of the form

H = −λ

2

s−1∑
x=1

Ux ⊗ τ+(x + 1)τ−(x) + U−1
x ⊗ τ+(x)τ−(x + 1). (2.4)

Most of our numerical examples will refer in fact to the following particular instance (Toy
model):

HT = −λ

2

s−1∑
x=1

e−i α
2 σ2τ+(x + 1)τ−(x) + ei α

2 σ2τ+(x)τ−(x + 1). (2.5)

Here σ = (σ1, σ2, σ3) is the single register spin 1/2 that we are going to consider in
our model; the cursor subsystem is implemented as a collection of spin-1/2 systems
τ(j) = (τ1(j), τ2(j), τ3(j)) , j ∈ 1, . . . , s, and τ±(j) = (τ1(j) ± iτ2(j))/2.

The Hamiltonian (2.3) can, of course, be considered as the restriction of (2.4) to the
eigenspace belonging to the eigenvalue 1 of

N3 =
s∑

x=1

1 + τ3(x)

2
, (2.6)

provided we identify |C(x)〉 with the simultaneous eigenstate of τ3(1), τ3(2), . . . , τ3(s) in
which only τ3(x) has eigenvalue +1.
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3. Speed of computation

The eigenvalue problem for the Hamiltonian (2.3) is solved by the following Ansatz for the
eigenstates

|e〉 =
s−1∑
x=1

v(x)Ux−1 · · · U1|r〉 ⊗ |C(x)〉, (3.1)

with |r〉 any non-vanishing vector in Hregister, suggested by the conservation laws discussed in
[25, equation (19), p 3270]. Inserting this Ansatz, the eigenvalue problem becomes

ev(x) = −λ

2
(v(x + 1) + v(x − 1)). (3.2)

It is immediate to recognize on the right-hand side a finite difference approximation of the
Laplace operator (the free Schrödinger equation is, not surprisingly, at work in the motion of
the clock); together with the boundary conditions v(0) = v(s +1) = 0, this leads in an obvious
way to the eigenvalues

ek = −λ cos

(
kπ

s + 1

)
, k = 1, 2, . . . , s. (3.3)

The multiplicity of each eigenvalue is equal to d = dim(Hregister). An orthonormal basis in
the eigenspace belonging to the eigenvalue ek is given by

|ek; rj 〉 =
s−1∑
x=1

vk(x)Ux−1 · · · U1|rj 〉 ⊗ |C(x)〉, (3.4)

where |r1〉, . . . , |rd〉 is an orthonormal basis in Hregister, and

vk(x) =
√

2

s + 1
sin

(
kπ

s + 1
x

)
. (3.5)

The same statements hold, of course, for the Hamiltonian (2.4) in the eigenspace belonging to
the eigenvalue 1 of N3.

An initial state (at time t = 0) of the form

|M1〉 = |R(1)〉 ⊗ |C(1)〉 (3.6)

evolves, under the Hamiltonian (2.3), into

|M1(t)〉 = e−iHt |M1〉 =
s∑

x=1

c(t, x; s)|R(x)〉 ⊗ |C(x)〉 (3.7)

where

c(t, x; s) = 2

s + 1

s∑
k=1

exp

[
iλt cos

(
kπ

s + 1

)]
sin

(
kπ

s + 1

)
sin

(
kπx

s + 1

)
. (3.8)

Equation (3.7) singles out the interest of the observable

Q =
s∑

x=1

x|C(x)〉〈C(x)| =
s∑

x=1

x
1 + τ3(x)

2
, (3.9)

the position of the cursor: it shows that if, at any time t,Q is measured on a system in the state
|M1(t)〉 and the result x is observed, then the register collapses into the state |R(x)〉 obtained
from |R(1)〉 by the application of U1, U2, . . . , Ux−1 in the right order.

The observable Q/t acquires thus the meaning of number of primitives per unit time
applied to the initial condition |R(1)〉 in the time interval (0, t). In order to study the behaviour
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over long intervals of time (t → +∞) of this observable in the case of a long computation
(s → +∞) it is expedient to study its characteristic function

φs,t (z) = 〈M1(t)| exp

(
iz

Q

t

)
|M1(t)〉 =

s∑
x=1

|c(t, x; s)|2 exp
(

iz
x

t

)
, (3.10)

namely the Fourier transform of its probability distribution.
The large s behaviour is easily studied by inserting the explicit integral representation of

the s → +∞ limit of (3.8) into (3.10); the t → +∞ limit is similarly studied by substituting
the sum over v = x/t , step 1/t , appearing in (3.10) with an integral and evaluating the leading
contributions by a standard stationary phase argument. We thus obtain

lim
t→∞ lim

s→∞ 〈M1(t)| exp

(
iz

Q

t

)
|M1(t)〉 =

∫ 1

0

4v2

π
√

1 − v2
eizv dv. (3.11)

As convergence in the sense of characteristic functions implies convergence in the sense of
cumulative distribution functions (convergence in law), we conclude that a ‘long’ computation
starting from the initial condition (3.6) proceeds ‘in the long run’ at a rate of V (M1) steps per
unit time (the unit of time having been set so that λ = 1 ), V (M1) being the random variable
defined by having as its characteristic function the right-hand side of (3.11); equivalently
stated it has probability density

fV (M1)(v) = I(0,1)(v)
4v2

π
√

1 − v2
. (3.12)

Here and in what follows we denote by I(a,b) the indicator function of an interval (a, b):

I(a,b)(x) =
{

1 if x ∈ (a, b)

0 otherwise.
(3.13)

The mean value

E(V (M1)) =
∫ 1

0
vfV (M1)(v) dv = 8

3π
(3.14)

and the variance

var(V (M1)) = E((V (M1))
2) − E(V (M1))

2 = 3

4
−

(
8

3π

)2

(3.15)

are then easy to compute from (3.12).
More generally, for any positive integer x0, a state such as∣∣Mx0

〉 = |R(x0)〉 ⊗ |C(x0)〉 (3.16)

having at a certain instant the cursor in x0, evolves with a speed V
(
Mx0

)
having cumulative

distribution function

FV (Mx0 )(v) ≡ Prob
(
V

(
Mx0

)
� v

)

= I(0,1)(v)

(
2 arcsin(v)

π
− sin(2x0 arcsin(v))

πx0

)
+ I(1,+∞)(x) (3.17)

and expectation value

E
(
V

(
Mx0

)) = 8

4π − π
/
x2

0

. (3.18)

Comparison between (3.14) and (3.18) shows the effect of a measurement of Q. If, at a
given t,Q is measured and the result x0 is found, then the state (3.7), into which the initial
condition (3.6) has evolved, collapses into the state (3.16). From this moment on the
computation proceeds at the mean rate (3.18): for large values of t, reading the clock is
likely to reduce the speed of further computation by a factor 3/4 (without, because of (3.4),
altering its correctness).
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4. Entropy

Motivated by the experience gained under the particular initial conditions (3.6) and (3.16) we
define, for any (unentangled) initial condition of the form (for fixed ε � 1)

|R;ψ0〉 = |R〉 ⊗
ε∑

x=1

ψ0(x)|C(x)〉, (4.1)

the ‘time-of-flight speed’ [11] of computation in the state ψ0 as the random variable V (ψ0)

having characteristic function

φV (ψ0)(z) = lim
t→+∞ lim

s→+∞ 〈R;ψ0| eitH exp

(
iz

Q

t

)
e−itH |R;ψ0〉. (4.2)

The above limit is easily shown to exist by the techniques outlined in the previous section; it
corresponds to the probability density

fV (ψ0)(v) = I(0,1)(v)
|	(arcsin(v))|2 + |	(π − arcsin(v))|2√

1 − v2
(4.3)

where

	(p) =
√

2

π

ε∑
x=1

sin(px)ψ0(x). (4.4)

The observable Q retains in this context the meaning of relational time [12] in the sense that,
given that at any parameter time t the cursor is found at x, it is then certain that the register is
found in the state Ux−1 · · · U2 · U1|R〉.

In reading the output at any time t, namely in the measurement of any, however carefully
chosen, observable of the register, there is an intrinsic uncertainty corresponding to the
uncertainty about how far the computation has proceeded. The fact that Q/t has a non-
trivial limit in law means that the leading term of the variance of Q is proportional to t2 and
therefore that the uncertainty increases with t. This section is devoted to the examination of
an example in which the notion of ‘the most careful choice’ of the observable to read on the
register can be made precise and shown to be pertinent to the algorithm considered.

We consider for the moment the initial condition |M1〉 given in (3.6) and its time evolution
|M1(t)〉 described in (3.7). More general initial conditions of the form (4.1) will be examined
in the next section.

Call

ρm(t) = |M1(t)〉〈M1(t)| (4.5)

the density matrix of the machine at time t.
By taking the partial trace TrHcursor(ρm(t)) with respect to the cursor degrees of freedom,

we get the density matrix ρr(t) of the register:

ρr(t) =
s∑

x=1

|c(t, x; s)|2|R(x)〉〈R(x)|. (4.6)

Call λj (t) the positive eigenvalues of ρr(t) and |bj (t)〉 the corresponding eigenstates. A
simple computation, amounting to the Schmidt decomposition [26] of the state (3.7), shows,
then, that the density matrix of the cursor is given by

ρc(t) =
∑

j

λj (t)|dj (t)〉〈dj (t)| (4.7)
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where

|dj (t)〉 = 1√
λj (t)

s∑
x=1

c(t, x; s)〈bj (t)|R(x)〉|C(x)〉. (4.8)

Because of (4.7) and of the orthonormality of the states |dj (t)〉, the von Neumann entropy of
the register and also of the cursor is then given by

S(ρc(t)) = −
∑

j

λj (t) ln λj (t) = S(ρr(t)). (4.9)

We observe that, as (4.6) shows, the von Neumann entropy of each subsystem does depend on
the algorithm being performed. It is, indeed, only under the hypothesis, nowhere made above,
that the states |R(x)〉 are orthonormal that (4.6) is the spectral decomposition of ρr(t) (the
von Neumann entropy becoming in this case equal to the Shannon entropy of the distribution
of Q).

We focus our attention, in what follows, on our Toy model (2.5), in which the register is
a single spin-1/2 system. We indicate by e1, e2, e3 the versors of the three coordinate axes to
which the components σ = (σ1, σ2, σ3) of such a spin are referred.

In the basis |σ3 = ±1〉, the density operator ρr(t) will be represented by the matrix

ρr(t) = 1

2

(
1 + s3(t) s1(t) − is2(t)

s1(t) + is2(t) 1 − s3(t)

)
(4.10)

where

sj (t) = Tr(ρr(t) · σj ), j = 1, 2, 3. (4.11)

Equivalently stated, the Bloch representative of the state ρr(t) is given by the three-dimensional
real vector

s(t) =
s∑

x=1

|c(t, x; s)|2〈R(x)|σ |R(x)〉. (4.12)

We shall assume, in what follows, that the initial state of the cursor is |C(1)〉 and that the
initial state of the register is of the form

|R(1)〉 = cos

(
θ

2

)
|σ3 = +1〉 + sin

(
θ

2

)
|σ3 = −1〉 (4.13)

namely the eigenstate belonging to the eigenvalue +1 of n(1) · σ , with

n(1) = e1 sin θ + e3 cos θ. (4.14)

We wish to remark that the above example captures the geometric aspects not only of such
simple computational tasks as NOT or

√
NOT (viewed as rotations of an angle π or π/2

respectively, decomposed into smaller steps of amplitude α) but also of Grover’s quantum
search [15]. If, indeed, the positive integer µ is the length of the marked binary word to be
retrieved, and we set

χ(µ) = arcsin
(
2− µ

2
)

(4.15)

and

θ = π − 2χ(µ) (4.16)

then the state (4.13) correctly describes the initial state |ι〉 of the quantum search as having a
component 2−µ/2 in the direction of the target state, here indicated by |ω〉 = |σ3 = +1〉, and a
component

√
1 − 2−µ in the direction of the flat superposition, here indicated by |σ3 = −1〉,

of the 2µ − 1 basis vectors orthogonal to the target state. In this notations, if
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− 1 − 0.5 0.5 1
s1

− 1

− 0.5

0.5

1

s3

Figure 1. A parametric plot of (s1(t), s3(t)) for 0 � t < s, λ = 1. The choice
µ = 7, χ = arcsin(1/2µ/2), s = 2µ + 1, α = −4χ, θ = π − 2χ of the parameters is motivated by
the connection with Grover’s algorithm. Only the initial state lies on the unit circumference, the
locus of pure states.

α = −4χ(µ), (4.17)

then the unitary transformation exp(−iασ2/2) corresponds to the product B · A of the oracle
step

A = Ir − 2|ω〉〈ω| (4.18)

and the estimation step

B = 2|ι〉〈ι| − Ir . (4.19)

We refer the reader to the beautifully pedagogical approach of Jozsa [18] where it is shown
that in Grover’s search the µ-qubits register evolves in the two-dimensional space spanned by
the its initial state |ι〉 and the target state |ω〉. Thus, one qubit suffices to represent all instances
of quantum search.

It is having in mind the connection with Grover’s algorithm that, for the sake of
definiteness, in the examples that follow we are going to consider the one-parameter family
of models, parametrized by the positive integers µ, corresponding to the choice (4.16) and
(4.17) of the parameters θ and α and to the choice s = 2µ + 1 of the number of cursor sites,
corresponding to the possibility of performing up to an exhaustive search.

In the example defined by the above conditions it is

〈R(x)|σ |R(x)〉 = sin(θ + (x − 1)α)e1 + cos(θ + (x − 1)α)e3 (4.20)

and, therefore,

s(t) =
s∑

x=1

|c(t, x; s)|2(sin(θ + (x − 1)α)e1 + cos(θ + (x − 1)α)e3). (4.21)

Figure 1 presents, inscribed in the unit circle, a parametric plot of (s1(t), s3(t)) under the
above assumptions. It is convenient to describe the Bloch vector s(t) = s1(t)e1 + s3(t)e3 in
polar coordinates as

s1(t) = r(t) sin γ (t), s3(t) = r(t) cos γ (t). (4.22)
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50 100 150 200 250
t

ln(  )2

S(ρr(  )t)

Figure 2. The von Neumann entropy of the register as a function of time, for the same model as
in figure 1, for 0 � t < s (solid line) and for s � t < 2s (dashed line).

A very simple approximate representation of s(t) becomes then possible:

r(t) eiγ (t) =
s∑

x=1

|c(t, x; s)|2 exp(i(θ + (x − 1)α))

= exp(i(θ − α))

s∑
x=1

|c(t, x; s)|2 exp(iαx)

≈ exp(i(θ − α))E (exp(iαλtV (M1(0)))) . (4.23)

The last step, legitimate for 1 
 λt < s, requires only the explicit computation of the
characteristic function corresponding to the probability density (3.12), which leads to

r(t) eiγ (t) ≈ 2 exp(i(θ − α))

T
((J1(T ) − T J2(T ) + i(T H0(T ) − H1(T )))) (4.24)

where Jk and Hk are, respectively, Bessel functions and Struve functions [31], and T = αλt .
The time evolution of the register subsystem is summarized by the Lindblad equation

[14, 20]

dρr(t)

dt
= − i

2

dγ (t)

dt
[σ2, ρr(t)] +

1

4

d ln r(t)

dt
[σ2, [σ2, ρr(t)]] . (4.25)

The commutator term [σ2, ρr(t)] describes the Hamiltonian part of the dynamics (after all we
are considering a rotation about the x2 axis); the double commutator [σ2, [σ2, ρr(t)]] describes,
in much the same sense as equation (2.8) of [23], the decohering effect of this rotation being
administered by the cursor in discrete steps at random times.

The eigenvalues of ρr(t) can be written as

λ1(t) = 1
2 (1 + r(t)), λ2(t) = 1

2 (1 − r(t)). (4.26)

The von Neumann entropy S(ρr(t)) is therefore

S (ρr(t)) = −1 + r(t)

2
ln

1 + r(t)

2
− 1 − r(t)

2
ln

1 − r(t)

2
. (4.27)

An example of its behaviour is shown in figure 2. The eigenvectors corresponding to the
eigenvalues (4.26) are, respectively

|b1(t)〉 =
(

cos(γ (t)/2)

sin(γ (t)/2)

)
, |b2(t)〉 =

(−sin(γ (t)/2)

cos(γ (t)/2)

)
. (4.28)

It is to be stressed that, at each time t, the projector |b1(t)〉〈b1(t)| is, among the projectors on the
state space of the register, the one having in the state ρr(t) the greatest probability of assuming,
under measurement, the value 1. Thus, the most careful choice (the one affected by minimum
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20 40 60 80 100 120 140
t

0.5

1

λ1( )t

λ2( )t

τ

Figure 3. The same model as in figure 1 and 2; 0 � t < 1.2s. The thin solid line is a graph of
Tr(ρr (t) · (Ir +σ3)/2), the probability of observing the target state |ω〉 = |σ3 = +1〉 in the example
of Grover’s algorithm. The dashed line is a graph of Tr(ρr (t) · (Ir − σ3)/2), the probability of
observing the ‘undesired’ output |σ3 = −1〉. The upper and lower bounds on the probability of
observing the target state are represented by the thick solid lines λ1(t) and λ2(t).
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Figure 4. Same parameters as in figure 1. (a) E(Q(t)) (solid line) compared with the dashed
straight line of slope 8/(3π). (b) The polar angle γ (t) of the Bloch vector (4.22) as a function of t.

uncertainty) of the observable to read on the register at time t is the projector |b1(t)〉〈b1(t)|. In
the case of Grover’s algorithm one must measure the projector |ω〉〈ω| = |σ3 = +1〉〈σ3 = +1|
(and one easily can, because of the kickback mechanism analysed, for instance, in [8]) and has
the freedom of choosing the time τ at which to perform the measurement. The best choice is
therefore such that |b1(τ )〉 = |ω〉 (in our notational setting, τ is the time at which the helix of
figure 1 crosses for the first time the positive s3 axis). In spite of the fact of being now in the
most favourable setting, one has, nevertheless, a deficit 1 − λ1(τ ) in the probability of finding
the target state.

As figure 3 shows, there are successive instants of time at which the probability of
successful retrieval has a local maximum (a remnant of the periodic nature of Grover’s
algorithm when applied by an outside macroscopic agent) but the heights of these successive
maxima form a sequence having a decreasing trend.

Further insight into our toy model is gained by examining the t dependence of
E(Q(t)) = 〈M1(t)|Q|M1(t)〉 and of the angle of polarization γ (t). The example of figure 4(a)
suggests that the mean value of speed derived from asymptotic considerations correctly
describes the average behaviour of the ‘clocking’ subsystem also for finite values of 0 < t < s.
As figure 4(b) shows, the ‘clocked’ subsystem system σ is, in turn, driven, on the average,
into uniform rotational motion.
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Figure 5. Same parameters as in figure 1; measurement of the observable σ3 at time τ . Frames
(a) and (b) represent the evolution for τ < t � 4τ of the Bloch vector when measurement returns
+1 and −1 respectively. Frame (c) represents the cumulative distribution functions of the speed V

when the results +1 (solid thick line) and −1 (dashed line) have respectively been found; the solid
thin line represents the c.d.f. of V in the case of no measurement.

Our model is so simple that we can explicitly study how the above semiclassical picture
(in which the time parameter t acquires operational meaning from its linear relation with
mean values of configurational observables of clocking and clocked subsystem) is distorted
by a measurement performed on either subsystem. The observations made at the end of the
previous section about the effect of reading the clock can indeed be complemented by the
examination of the effect of reading the register.

Suppose that the observable σ3 has been measured at time τ and the result +1 has been
found: the Bloch diagram of figure 5(a) shows then that the evolution of the register proceeds
in much the same way as in the undisturbed situation of figure 1 (with the only obvious
difference that the post-measurement initial condition |b1(τ )〉 lies on the unit circumference).
If, instead, the result −1 has been found (figure 5(b)) the post-measurement evolution of the

register is completely different from the unperturbed one.
We conclude this section with an example of the insight that the time evolution

of S(ρr(t)) can give on the algorithm U1, U2, . . . , Us−1 being performed by the
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Figure 6. Same parameters as in the previous figures; Ux as in (4.29). The Bloch diagram refers
to the time interval (0, τ ) needed to reach the first maximum in probability.

machine. Suppose of using, instead of the assignment (2.4) of the primitive steps,
U1 = U2 = · · · = Us−1 = exp(−iασ2/2), the alternative assignment

Ux =
{
A for odd x

B for even x
(4.29)

where A and B are given by (4.18) and (4.19). Figure 6 gives, for this example, a full
account of the diffusive character [16] of Grover’s quantum search: the first maximum of the
probability of finding the target state (figure 6(a)) is reached in correspondence of the first
local minimum of entropy (figure 6(b)): that the search has gone, before this instant, through
a local maximum of entropy is shown with particular evidence by the Bloch diagram of
figure 6(c).

5. The role of initial conditions

An initial condition of the form

|R(1);ψ0〉 = |R(1)〉 ⊗
ε∑

x=1

ψ0(x)|C(x)〉 (5.1)

with ψ0 having support in a bounded region �ε = {1, 2, . . . , ε} ⊆ {1, 2, . . . , s} evolves, under
(2.3) as

e−itH |R(1);ψ0〉 =
ε∑

x=1

ψ0(t, x)|R(x)〉 ⊗ |C(x)〉, (5.2)
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where ψ0(t, x) solves, with the obvious boundary and initial conditions, the (discretized) free
Schrödinger equation. The ensuing spreading of the wave packet leads to an increasing trend
(with the exception of the effects of reflection at time t ≈ s evidenced in figures 6(b) and 2)
of the von Neumann entropy S(ρr(t)) of the state

ρr(t) =
s∑

x=1

|ψ0(t, x)|2 |R(x)〉〈R(x)| (5.3)

of the register. This is an undesirable feature because S(ρr(t)) gives a lower bound on
the Shannon entropy of the distribution of any observable of the register, for short on the
uncertainty in any reading of the output.

The models of the previous section were intended to show the above effect; in this section
we devote some effort to the goal of decreasing it, by suitable choices of initial condition
aimed at reducing the spreading of Q in the state ψ0(t, x). It is sufficient, for this purpose, to
study only the cursor, evolving under the Hamiltonian

H0 = −λ

2

s−1∑
x=1

τ+(x + 1)τ−(x) + τ+(x)τ−(x + 1). (5.4)

The point is to devise an initial condition ψ0 which uses whatever additional finite amount
�ε = {1, 2, . . . , ε} of space resources is available as a launch pad for the cursor in an ‘efficient’
way: this means both a high value of the expectation of V (ψ0) and a small value of the variance
of V (ψ0) (we want the spreading of Q to increase at a low rate for a short time of computation).
That both goals can be achieved is shown by examining the family of initial conditions, given
by the eigenstates of a Hamiltonian of the form (5.4) restricted to qubits in �ε :

|ck〉 =
ε∑

x=1

√
2

ε + 1
sin

(
kπx

ε + 1

)
|C(x)〉, k = 1, 2, . . . , ε. (5.5)

The probability density of the speed Vk ≡ V (ck) corresponding to each of the above states is
easily computed from (4.3):

fVk
(v) = I(0,1)(v) · 4

(
3 − 2v2 + cos

(
2kπ
ε+1

)) (
sin

(
kπ
ε+1

))2
(sin((ε + 1) arcsin(v)))2

π
√

1 − v2(ε + 1)
(
2v2 + cos

(
2kπ
ε+1

) − 1
)2 . (5.6)

The behaviour of Vk is exemplified by figure 7. We are taking there, as we will always do
in this section for the sake of notational convenience, ε to be odd

ε = 2n − 1. (5.7)

The examples of figure 7 clearly show the dispersive nature of the medium (5.4); they also
show that increase of the mean value is accompanied by decrease of the variance (as shown
by the increase in the steepness of the graph as k goes from 1 to n). An obvious choice for the
initial state of the cursor emerges from the above example:

|cn〉 =
2n−1∑
x=1

√
1

n
sin

(π

2
x
)

|C(x)〉

= |C(1)〉 − |C(3)〉 + |C(5)〉 + · · · − (−1)n|C(2n − 1)〉√
n

, (5.8)

conforming to the idea of packing the maximum number of wavelengths in the launch pad
�ε = {1, 2, . . . , ε}, and having a, presumably easy to prepare, stationary state of the free XY

chain localized in �ε .
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Figure 7. n = 5, ε = 2n − 1 = 9. The cumulative distribution functions FVk
(v) = Prob(Vk � v)

corresponding to the densities (5.6), for k going from 1 to n. The ticks on the v axes are
E(V1) < E(V2) < · · · < E(V5).

The random variable Vn ≡ V (cn) has probability density

fVn
= I(0,1)(v)

(sin(2n arcsin(v)))2

πn(1 − v2)3/2
(5.9)

and, therefore, expectation value

E(Vn) = 4

π

n∑
h=1

(
1

4h − 3
− 1

4h − 1

)

= 1 − 4

π

+∞∑
h=n+1

(
1

4h − 3
− 1

4h − 1

)

≈ 1 − 1

2πn
. (5.10)

The second moment of Vn is explicitly given by

E
(
V 2

n

) = 1 − 1

4n
. (5.11)

The above considerations lead to the following asymptotic behaviour, for large n, of the
variance of Vn:

var(Vn) = 4 − π

4πn
. (5.12)

Equation (5.10) is a quantitative assessment of the cost in terms of space resources of achieving
the first requisite of efficiency, namely high mean speed; similarly, (5.12) gives the cost of
decreasing the variance of Vn.

Incidentally, as the observable Q has, in the state |cn〉, expectation value

E(Qn) = 〈cn|Q|cn〉 = n (5.13)

and variance

var(Qn) = n2 − 1

3
, (5.14)
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Figure 8. Solid lines: the expectation value of Q in a state |Mn(t)〉 evolving from an initial condition
having the cursor in |cn〉; the slope of the initial linear part of the graph is correctly predicted by
(5.10). For comparison purposes the dashed lines show 〈M1(t)|Q|M1(t)〉 as a function of time
and the corresponding linear fit with slope given by (3.14).
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Figure 9. s = 50, n = 5. (a) The variance of Q in a state |Mn(t)〉 as a function of t, compared
with its best fit of the form const + t2(4 − π)/(4πn), in the time interval (ε, s − ε) in which
boundary effects can be neglected. (b) The variance of Q in the state |M1(t)〉, compared with its
approximation t2(3/4 − (8/(3π))2), suggested by (3.15).

equation (5.12) can be read as saying that, in the initial state |cn〉, the position-velocity
uncertainty product is given by

var(Qn) var(Vn) ≈ n(4 − π)

12π
. (5.15)

Figures 8 and 9 show the relevance of the above asymptotic considerations for the case of
finite ε and finite s for t < s. The effect of the initial condition is most evident if we compare
the evolution of the state of the register from the initial state |M1〉 = |R(1)〉 ⊗ |C(1)〉 with the
evolution starting from

|Mn〉 = |R(1)〉 ⊗ |cn〉. (5.16)

This is done in figures 10 and 11 in the same probability-entropy-Bloch format as in figure 6.
We examine there two different ways of using an additional amount s − N of space, of size
comparable with the minimum amount N required by the algorithm. Figure 10 summarizes
the experience developed in [2] on the effect of using all this additional space as a telomeric
chain or ‘landing strip’: as long as the cursor stays in this region the register remains acted
upon by the optimal number of primitives. Figure 11 shows the improvement obtained by
investing part of the additional space as a ‘launch pad’ on which to prepare a state in which
the spreading of the cursor increases (see figure 9) at a lower rate than when starting from
position 1.
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Figure 10. s = 50, 0 � t � 3s, µ = 10, N = � π
4 2µ/2
 (the Grover-optimal number of active

steps); U1 = U2 = · · · = UN = exp(−iασ2/2), with α and θ chosen as in (4.16) and (4.17);
Ux = Ir for x > N ; initial state |M1〉 = |R(1)〉 ⊗ |C(1)〉.

Comparison of figures 10(c) and 11(c), in particular the improvement of the behaviour
after reflections at site s, shows that the idealized scenario of reversible computation (the
cursor, ‘going back and forth’, ‘does and undoes’ the reversible computation) is within reach,
with, as (5.12) shows, a polynomial cost in space. We note, in figure 12, that we can do much
better than in figure 11, with the same expenditure of space resources, in approximating the
reversible scenario if, instead of the initial state (5.8), we set the cursor in the initial state

|γn〉 =
√

2

3n

2n−1∑
x=1

(
1 + cos

( π

2n
x
))

sin
(π

2
x
)

|C(x)〉. (5.17)

The state |γn〉 emerges quite naturally as a three-mode approximation (a linear combination
of |cn〉 and |cn±1〉) of the initial condition that maximizes the mean speed of computation for
fixed length ε of the launch pad.

6. Number of particles

In the previous section, we have provided examples of the benefit of spreading the initial
wavefunction of the cursor (N3 = 1) on an initial launch pad instead of, as it would be
classically ‘obvious’, having it strictly localized at site 1. Equality (5.12) is, in this context,
a quantitative assessment of the cost, in term of space resources, of implementing Feynman’s
ballistic mode of computation.

In this section we abandon, in the same spirit, the classical prejudice of having a single
clocking excitation, and present a preliminary analysis of the idea of starting the cursor in an



Speed and entropy of an interacting continuous time quantum walk 5889

25 50 75 110 150
t

0.2

0.4

0.6

0.8

1

s−N s s+N

(a)

25 50 75 110 150
t

ln(  )2

s−N s s+N

(b)

− 1 − 0.5 0.5 1
s1

− 1

− 0.5

0.5

1

s3

(c)

|<ω |b1(t)>|2 S(ρr(t))

Figure 11. s = 50, 0 � t � 3s, µ = 10, N = 25, α and θ as in figure 10; n = 5, ε = 2n − 1;
Uε = Uε+1 = · · · = Uε+N−1 = exp(−iασ2/2); Ux = Ir , for 1 � x < ε or � ε + N ; initial state
|Mn〉 = |R(1)〉 ⊗ |cn〉.

initial state with N3 > 1. The idea is to follow the motion of a swarm of several clocking
agents (cursor spins in the ‘up’ state) acting on the register. Stated otherwise, with reference
for simplicity to the case N3 = 2, we allow the clock to perform a quantum walk on the graph
having the vertices (x1, x2), with 1 � x1 < x2 � s, with edges between nearest neighbours
[24].

We recall, mainly in order to establish our notation, a few elementary facts [19] about the
XY Hamiltonian (5.4).

The eigenstates of H0 in the subspace N3 = n are labelled by subsets of size n of
�s = {1, 2, . . . , s}; if K = {k1, k2, . . . , kn} is such a subset (where we will always assume
1 � k1 < k2 < · · · < kn � s), an eigenstate of H0 belonging to the eigenvalue

EK =
n∑

j=1

ekj
(6.1)

is given by

|EK〉 =
∑

M⊆�s ;|M|=n

V (K,M)|M〉. (6.2)

For M = {x1, x2, . . . , xn}, with 1 � x1 < x2 < · · · < xn � s, we have indicated above by
|M〉 the simultaneous eigenstate of τ3(1), τ3(2), . . . , τ3(s) in which only the spins in M are
‘up’, and we have set

V (K,M) = det
(∥∥vki

(xj )
∥∥

i,j=1,...,n

)
(6.3)

where the functions vk have been defined in (3.5).
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Figure 12. Same parameters as in figure 11; initial state |R(1)〉 ⊗ |γn〉, as in (5.17).

We set

Qi |{x1, x2, . . . , xn}〉 = xi |x1, x2, . . . , xn〉. (6.4)

It is easy to study, by the techniques of 3, the asymptotic (as s → +∞ and t → +∞)
joint distributions of the observables Qi , and therefore to give quantitative estimates of the
correlation between the speeds of different particles and its dependence on the initial condition.
To quote just one example, in the subspace N3 = 2 and in the state |{1, 2}〉 the velocities
(V1, V2) of the two ‘up’ spins (the limits in law of Q1/t and Q2/t , respectively) have joint
probability density

fV1,V2(v1, v2) = I(0,v2)(v1)I(0,v1)(v2)
64v2

1v
2
2

(
2 − v2

1 − v2
2

)
π2

√(
1 − v2

1

)(
1 − v2

2

) . (6.5)

It is immediate from (6.5) to compute the conditional expectation E(V1|V2) of the velocity of
the leftmost particle given that of the rightmost particle; it turns out to be

E(V1|V2) = 3V2

4
+ O

(
V 5

2

)
. (6.6)

In this section we advance the following idea: if the issue of the computation is the application,
for a given number g of times, of a given primitive G to the register, initialize the cursor in the
N3 = g subspace, in the state, say, |{1, 2, . . . , g}〉; let then the system evolve according to the
Hamiltonian:

H = −λ

2

s−1∑
x=1

Ux ⊗ τ+(x + 1)τ−(x) + U−1
x ⊗ τ+(x)τ−(x + 1) (6.7)
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Figure 13. µ = 4, g = 3, x0 = 6, s = 20, 0 � t � 4s; Ux0 = G = exp(−iασ2/2) with α and θ

given by (4.17) ad (4.16), Ux = Ir for x �= x0; initial condition |R(1)〉 ⊗ |{1, 2, 3}〉 with |R(1)〉
given by (4.13).

where

Ux = Gδx0 ,x , for a fixed x0 � g, G0 = Ir . (6.8)

An implementation of this approach is shown by the probability-entropy-Bloch diagram
of figure 13. Simple expressions for the quantities shown in figure 13 can be obtained by
the explicit form of the eigenvectors of the Hamiltonian described by (6.7) and (6.8) in every
eigenspace of N3. For instance in the subspace N3 = 3 a complete set of eigenstates is given,
for ζ = ±1 and 1 � j < k � s, by

|ζ ;E{j,h,k}〉 =
∑

1�x1<x2<x3�s

V ({j, h, k}, {x1, x2, x3}).

×Gϑ(x1−x0)+ϑ(x2−x0)+ϑ(x3−x0)|σ3 = ζ 〉 ⊗ |{x1, x2, x3}〉 (6.9)

where ϑ is the unit step function defined by

ϑ(x) =
{

1, if x > 0
0, if x � 0.

(6.10)

The spectral structure (6.9) is peculiar of the extremely simple situation (6.8) (just one
active link) considered there. As soon as we have more than one active link, say the primitive
A acting on link (a, a + 1) and the primitive B acting on link (b, b + 1), with b > a + 1, a
new phenomenon (that for simplicity we discuss in the N3 = 2 case) takes place: the energy
eigenstates have no longer the form of a linear combinations of tensors products of the form
M(x1, x2)|σ3 = ζ 〉 ⊗ |{x1, x2}〉, with M(x1, x2) a monomial in A and B; related to this, the
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Figure 14. µ = 4, s = 20, 0 � t � 4s; (a) solid line: Ua = A, Ub = B, a = 6, b = 8, the same
initial condition as in figure 13; (b) solid line: the N3 = 3 state has been prepared by setting the
initial chain {1, . . . , 6} in its ground state. For comparison purpose figure 13(a) is reproduced in
both frames as a dashed line.

coordinates x1, x2 lose, strictly speaking, the meaning of relational time [13]: given that at a
given value of t,Q1 = x1 and Q2 = x2 we can only claim that the state of the register has
been acted upon by a polynomial in A and B.

This phenomenon is easily understood in terms of the Dyson expansion of the propagator:
the probability amplitude for the two excitations being in x1, x2 (both larger than b), given that
at time 0 they were in y1, y2 (both � a), receives contributions not only from Feynman paths
along which the rightmost excitation goes past a and b and then the leftmost excitation goes
past a and b (along such a computational path the state of the register is modified by BABA),
but also, among others, from paths along which both excitations go past a before both going
past b (along such a computational path the state of the register is modified by BBAA).

Waiting for an algorithm that might benefit from the above possibility of simultaneously
exploring different computational paths (concurrency?), we explore, in figure 14, the idea
(or classical prejudice?) that this nuisance can be in part avoided by using suitable initial
conditions. The idea, suggested by (5.6), is of course to prepare on �a = {1, 2, . . . , a} an
initial N3 = g state such that the excitations travel as spatially well localized wave packets
of so different speeds that it is at any time unlikely that they simultaneously hit the region
(a + 1, b).

We conclude with a remark about our insistence, throughout this paper, in gathering
experience about the behaviour of the evolution of a state of an initial subchain �ε =
{1, 2, . . . , ε}.

We observe that an initial state (not necessarily in the N3 = 1 subspace) in �ε of the form

|in〉 = 1

2ε

∑
M⊆�ε


 ∑

z∈{−1,1}ε
f (z)

∏
j∈M

zj


 |τ3(x) = (−1)IM(x)〉, (6.11)

where IM is the indicator function of the set M and x = 1, . . . , ε, can be prepared as a
post-kickback state (with respect to an ancilla qubit) after the reversible evaluation of a
function f : {−1, 1}ε → {−1, 1}. We conjecture that subsequent evolution of |in〉 under the
Hamiltonian (5.4) on �s = {1, 2, . . . , s}, with s � ε, might help in setting tests of hypotheses
about the Fourier coefficients

cM = 1

2ε

∑
z∈{−1,1}ε

f (z)
∏
j∈M

zj (6.12)
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of the function f via time-of-flight techniques. There is at least one non-trivial case in which
the above conjecture works: having prepared all spins in {ε + 1, . . . , s} in the ‘up’ state,
the Deutsch-Josza alternative [9] ‘constant (c∅ = 1) versus balanced (c∅ = 0)’ becomes
equivalent to the alternative ‘stationary versus non-stationary’ under the Hamiltonian (5.4),
about the state of the overall system.

7. Conclusions and outlook

The pure XY Hamiltonian H0 given in (5.4) describes, in the Luther–Lüscher–Susskind
formalism [21, 22, 29], a massless Dirac quantum field on a one-dimensional lattice. The
full Hamiltonian (2.4) is suggestive of the minimal coupling of this Fermi field, implementing
the clock, with additional quantum fields implementing the register. This work intends to
contribute to the line of research, that seems to be emerging these days [6, 28, 30], devoted
to making this connection between quantum computing and relativistic quantum field theory
explicit. It is an easy guess that this quantum field theoretical intuition was well present in the
original work [10]. Particularly penetrating is, in this respect, Peres’ remark that in Feynman’s
model calculations run forward and backward in time just as particles and antiparticles in
Feynman’s classical work on relativistic quantum field theory ([25, p 3269]). As a further
remark, we observe that the three-body interactions needed by Feynman’s model are hard to
conceive out of a field theoretical context.

It is because of this field theoretical perspective that we have tried to avoid any
‘engineering’ (space dependence) of the coupling constant λ in (5.4), well aware of the
fact that, in the Dirac → XY correspondence, λ is related to the spacing adopted in the lattice
approximation. In such a context it would be very hard to understand (without a projection
mechanism [7], which seems to have an exponential cost) the implementation of a space
dependence such as

λ(x) = const
√

x(x − s) (7.1)

that leads in [7, 25] to the existence of sharply distinguished instants in which the position of
the cursor is certain. Nor would it be easy to understand (7.1) in a solid-state implementation
[4], where λ is related to the effective mass of the clocking excitation.

In this paper, we have focused our attention on the clocking field τ(x), singled out as the
one which, under suitable boundary conditions and for initial conditions localized close to
the boundary, exhibits particle-like excitations performing, for long enough intervals of t, a
quantum walk in a distinguished direction.

Spatial homogeneity of the chain leads to the existence of the limit in law V =
limt→+∞ Q(t)/t for the position of such an excitation on a semi-infinite (s → +∞) box.
In the N3 = 1 subspace, because of Peres’ conservation law [25], the observable Q acquires
the meaning of relational time (given the observed value of Q, the state of the register is
known with certainty) and, therefore, the random variable V acquires the meaning of number
of computational steps per unit t. The fact that the variance of V is strictly positive has the
effect that in terms of the parameter time t (as opposed to relational time Q) the evolution of
the register appears to be dissipative: we have, for a simple model, written the corresponding
Lindblad evolution and studied the ensuing build-up of entropy.

On our simple instance of quantum search we have shown that, in the ‘low level’,
physical approach that we pursue (in which time runs, for the cursor, because it is coupled
with an additional quantum field) the build-up of entropy imposes an upper bound on the
probability of finding the target state which is more severe than the one predicted by the ‘high
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level’, algorithmic approach (in which the successive primitives are applied by an external
macroscopic agent).

In the attempt of decreasing the deficit in the probability of success in a quantum search,
due to the decohering effect of the coupling with the clocking field, we have provided examples
of the benefit of spreading the initial wavefunction of the cursor on an initial launch pad instead
of, as a classical prejudice would suggest, having it strictly localized at one site.

We have, similarly, abandoned the classical prejudice of having a single clocking
excitation, providing a preliminary analysis of the idea of starting the cursor in an initial
state with N3 > 1. We have shown, in this context, an efficient way of iterating the application
of a single primitive to the register and experienced the possibility, by a suitable choice of the
initial conditions, of steering the quantum walk of the excitations in such a way as to reduce
the conflicts about the order of application of non-commuting primitives.

The case N3 > 1 deserves, we think, further research, both from the algorithmic and the
physical point of view.

From the algorithmic point of view we plan to examine other instances (beyond the one
cursorily examined at the end of section 6) in which time-of-flight spectroscopy (based on the
Fourier transform versus speed relationship recalled in section 3) of the post-kickback state
can answer Yes/No questions about the algorithm.

From the physical point of view, the ‘obvious’ choice of the ‘all down’ reference state
made throughout this paper is far from being optimal from the point of view of studying
the thermodynamic cost of resetting the register. The best reference state for the study of
this ultimate cost of reversible computation would of course be the ground state and, for
Hamiltonians of the form (5.4), with s even, it is an N3 = s/2 state. This will require, we
think, the formulation of an appropriate Bethe Anzatz for the Hamiltonian (2.4).
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