9 research outputs found

    Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes

    Get PDF
    Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% cases of SMA result from deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1due to predominant skipping of exon 7. However, correction of SMN2 exon 7 splicing has proven to confer therapeutic benefits in SMA patients. The only approved drug for SMA is an antisense oligonucleotide (Spinraza™/Nusinersen), which corrects SMN2 exon 7 splicing by blocking intronic splicing silencer N1 (ISS-N1) located immediately downstream of exon 7. ISS-N1 is a complex regulatory element encompassing overlapping negative motifs and sequestering a cryptic splice site. More than 40 protein factors have been implicated in the regulation of SMN exon 7 splicing. There is evidence to support that multiple exons of SMN are alternatively spliced during oxidative stress, which is associated with a growing number of pathological conditions. Here, we provide the most up to date account of the mechanism of splicing regulation of the SMN genes

    Centronuclear (myotubular) myopathy

    Get PDF
    <p>Abstract</p> <p>Centronuclear myopathy (CNM) is an inherited neuromuscular disorder characterised by clinical features of a congenital myopathy and centrally placed nuclei on muscle biopsy.</p> <p>The incidence of X-linked myotubular myopathy is estimated at 2/100000 male births but epidemiological data for other forms are not currently available.</p> <p>The clinical picture is highly variable. The X-linked form usually gives rise to a severe phenotype in males presenting at birth with marked weakness and hypotonia, external ophthalmoplegia and respiratory failure. Signs of antenatal onset comprise reduced foetal movements, polyhydramnios and thinning of the ribs on chest radiographs; birth asphyxia may be the present. Affected infants are often macrosomic, with length above the 90<sup>th </sup>centile and large head circumference. Testes are frequently undescended. Both autosomal-recessive (AR) and autosomal-dominant (AD) forms differ from the X-linked form regarding age at onset, severity, clinical characteristics and prognosis. In general, AD forms have a later onset and milder course than the X-linked form, and the AR form is intermediate in both respects.</p> <p>Mutations in the myotubularin <it>(MTM1) </it>gene on chromosome Xq28 have been identified in the majority of patients with the X-linked recessive form, whilst AD and AR forms have been associated with mutations in the dynamin 2 <it>(DNM2) </it>gene on chromosome 19p13.2 and the amphiphysin 2 <it>(BIN1) </it>gene on chromosome 2q14, respectively. Single cases with features of CNM have been associated with mutations in the skeletal muscle ryanodine receptor <it>(RYR1) </it>and the hJUMPY <it>(MTMR14) </it>genes.</p> <p>Diagnosis is based on typical histopathological findings on muscle biopsy in combination with suggestive clinical features; muscle magnetic resonance imaging may complement clinical assessment and inform genetic testing in cases with equivocal features. Genetic counselling should be offered to all patients and families in whom a diagnosis of CNM has been made.</p> <p>The main differential diagnoses include congenital myotonic dystrophy and other conditions with severe neonatal hypotonia.</p> <p>Management of CNM is mainly supportive, based on a multidisciplinary approach. Whereas the X-linked form due to <it>MTM1 </it>mutations is often fatal in infancy, dominant forms due to <it>DNM2 </it>mutations and some cases of the recessive <it>BIN1</it>-related form appear to be associated with an overall more favourable prognosis.</p

    Body mass index and complications following major gastrointestinal surgery: A prospective, international cohort study and meta-analysis

    Get PDF
    Aim Previous studies reported conflicting evidence on the effects of obesity on outcomes after gastrointestinal surgery. The aims of this study were to explore the relationship of obesity with major postoperative complications in an international cohort and to present a metaanalysis of all available prospective data. Methods This prospective, multicentre study included adults undergoing both elective and emergency gastrointestinal resection, reversal of stoma or formation of stoma. The primary end-point was 30-day major complications (Clavien\u2013Dindo Grades III\u2013V). A systematic search was undertaken for studies assessing the relationship between obesity and major complications after gastrointestinal surgery. Individual patient meta-analysis was used to analyse pooled results. Results This study included 2519 patients across 127 centres, of whom 560 (22.2%) were obese. Unadjusted major complication rates were lower in obese vs normal weight patients (13.0% vs 16.2%, respectively), but this did not reach statistical significance (P = 0.863) on multivariate analysis for patients having surgery for either malignant or benign conditions. Individual patient meta-analysis demonstrated that obese patients undergoing surgery formalignancy were at increased risk of major complications (OR 2.10, 95% CI 1.49\u20132.96, P &lt; 0.001), whereas obese patients undergoing surgery for benign indications were at decreased risk (OR 0.59, 95% CI 0.46\u20130.75, P &lt; 0.001) compared to normal weight patients. Conclusions In our international data, obesity was not found to be associated with major complications following gastrointestinal surgery. Meta-analysis of available prospective data made a novel finding of obesity being associated with different outcomes depending on whether patients were undergoing surgery for benign or malignant disease

    Body mass index and complications following major gastrointestinal surgery: a prospective, international cohort study and meta-analysis.

    No full text
    AIM: Previous studies reported conflicting evidence on the effects of obesity on outcomes after gastrointestinal surgery. The aims of this study were to explore the relationship of obesity with major postoperative complications in an international cohort and to present a meta-analysis of all available prospective data. METHODS: This prospective, multicentre study included adults undergoing both elective and emergency gastrointestinal resection, reversal of stoma or formation of stoma. The primary end-point was 30-day major complications (Clavien-Dindo Grades III-V). A systematic search was undertaken for studies assessing the relationship between obesity and major complications after gastrointestinal surgery. Individual patient meta-analysis was used to analyse pooled results. RESULTS: This study included 2519 patients across 127 centres, of whom 560 (22.2%) were obese. Unadjusted major complication rates were lower in obese vs normal weight patients (13.0% vs 16.2%, respectively), but this did not reach statistical significance (P = 0.863) on multivariate analysis for patients having surgery for either malignant or benign conditions. Individual patient meta-analysis demonstrated that obese patients undergoing surgery for malignancy were at increased risk of major complications (OR 2.10, 95% CI 1.49-2.96, P < 0.001), whereas obese patients undergoing surgery for benign indications were at decreased risk (OR 0.59, 95% CI 0.46-0.75, P < 0.001) compared to normal weight patients. CONCLUSIONS: In our international data, obesity was not found to be associated with major complications following gastrointestinal surgery. Meta-analysis of available prospective data made a novel finding of obesity being associated with different outcomes depending on whether patients were undergoing surgery for benign or malignant disease
    corecore