3,773 research outputs found
Theory of Room Temperature Ferromagnet V(TCNE)_x (1.5 < x < 2): Role of Hidden Flat Bands
Theoretical studies on the possible origin of room temperature ferromagnetism
(ferromagnetic once crystallized) in the molecular transition metal complex,
V(TCNE)_x (1.5<x<2) have been carried out. For this family, there have been no
definite understanding of crystal structure so far because of sample quality,
though the effective valence of V is known to be close to +2. Proposing a new
crystal structure for the stoichiometric case of x=2, where the valence of each
TCNE molecule is -1 and resistivity shows insulating behavior, exchange
interaction among d-electrons on adjacent V atoms has been estimated based on
the cluster with 3 vanadium atoms and one TCNE molecule. It turns out that
Hund's coupling among d orbitals within the same V atoms and antiferromagnetic
coupling between d oribitals and LUMO of TCNE (bridging V atoms) due to
hybridization result in overall ferromagnetism (to be precise, ferrimagnetism).
This view based on localized electrons is supplemented by the band picture,
which indicates the existence of a flat band expected to lead to ferromagnetism
as well consistent with the localized view. The off-stoichiometric cases (x<2),
which still show ferromagnetism but semiconducting transport properties, have
been analyzed as due to Anderson localization.Comment: Accepted for publication in J. Phys. Soc. Jpn. Vol.79 (2010), No. 3
(March issue), in press; 6 pages, 8 figure
Quantitative Thermal Testing Profiles As A Predictor Of Treatment Response To Topical Capsaicin In Patients With Localized Neuropathic Pain
There are no reliable predictors of response to treatment with capsaicin. Given that capsaicin application causes heat sensation, differences in quantitative thermal testing (QTT) profiles may predict treatment response. The aim of this study was to determine whether different QTT profiles could predict treatment outcomes in patients with localized peripheral neuropathic pain (PeLNP). We obtained from medical records QTT results and treatment outcomes of 55 patients treated between 2010 and 2013. Warm sensation threshold (WST) and heat pain threshold (HPT) values were assessed at baseline at the treatment site and in the asymptomatic, contralateral area. Responders were defined as those who achieved a > 30% decrease in pain lasting > 30 days. Two distinct groups were identified based on differences in QTT profiles. Most patients (27/31; 87.1%) with a homogenous profile were nonresponders. By contrast, more than half of the patients (13/24, 54.2%) with a nonhomogenous profile were responders (p = 0.0028). A nonhomogenous QTT profile appears to be predictive of response to capsaicin. We hypothesize patients with a partial loss of cutaneous nerve fibers or receptors are more likely to respond. By contrast, when severe nerve damage or normal cutaneous sensations are present, the pain is likely due to central sensitization and thus not responsive to capsaicin. Prospective studies with larger patient samples are needed to confirm this hypothesis
Operational Framework to Quantify “Quality of Recycling” across Different Material Types
Many pledges and laws are setting recycling targets without clearly defining quality of recycling. Striving to close this gap, this study presents an operational framework to quantify quality of recycling. The framework comprises three dimensions: the Virgin Displacement Potential (VDP); In-Use Stocks Lifetime (IUSL); and Environmental Impact (EI). The VDP indicates to what extent a secondary material can be used as a substitute for virgin material; the IUSL indicates how much of a certain material is still functional in society over a given time frame, and the EI is a measure of the environmental impact of a recycling process. The three dimensions are aggregated by plotting them in a distance-to-target graph. Two example calculations are included on poly(ethylene terephthalate) (PET) and glass. The results indicate that the recycling of bottle and container glass collected via a deposit-refund system has the lowest distance-to-target, at 1.05, and, thus, the highest quality of recycling. For PET bottles, the highest quality of recycling is achieved in closed-loop mechanical recycling of bottles (distance to optimal quality of 0.96). Furthermore, sensitivity analysis indicates that certain parameters, e.g., the collection rate for PET bottles, can reduce the distance-to-target to 0.75 when all bottles are collected for recycling
Violation of Bell inequalities by photons more than 10 km apart
A Franson-type test of Bell inequalities by photons 10.9 km apart is
presented. Energy-time entangled photon-pairs are measured using two-channel
analyzers, leading to a violation of the inequalities by 16 standard deviations
without subtracting accidental coincidences. Subtracting them, a 2-photon
interference visibility of 95.5% is observed, demonstrating that distances up
to 10 km have no significant effect on entanglement. This sets quantum
cryptography with photon pairs as a practical competitor to the schemes based
on weak pulses.Comment: 4 pages, REVTeX, 2 postscript figures include
Why Are Male Social Relationships Complex in the Doubtful Sound Bottlenose Dolphin Population?
Copyright 2008 Elsevier B.V., All rights reserved.Peer reviewedPublisher PD
Bell State Preparation using Pulsed Non-Degenerate Two-Photon Entanglement
We report a novel Bell state preparation experiment. High-purity Bell states
are prepared by using femtosecond pulse pumped \emph{nondegenerate} collinear
spontaneous parametric down-conversion. The use of femtosecond pump pulse {\em
does not} result in reduction of quantum interference visibility in our scheme
in which post-selection of amplitudes and other traditional mechanisms, such
as, using thin nonlinear crystals or narrow-band spectral filters are not used.
Another distinct feature of this scheme is that the pump, the signal, and the
idler wavelengths are all distinguishable, which is very useful for quantum
communications.Comment: 4 pages, submitted to PR
Long-distance Bell-type tests using energy-time entangled photons
Long-distance Bell-type experiments are presented. The different experimental
challenges and their solutions in order to maintain the strong quantum
correlations between energy-time entangled photons over more than 10 km are
reported and the results analyzed from the point of view of tests of
fundamental physics as well as from the more applied side of quantum
communication, specially quantum key distribution. Tests using more than one
analyzer on each side are also presented.Comment: 22 pages including 7 figures and 5 table
Falso aneurisma aórtico 30 años después de la corrección de una coartación: tratamiento quirúrgico bajo hipotermia profunda
We report a case of a large false aortic aneurysm that had developed in a 43-year-old man who had had coarctation repair 30 years previously. The coarctation repair had been done by inserting an end-to-end Dacron tubular graft which was sutured with silk. The re-operation was successfully performed under deep hypothermic arrest and it was noted that there was complete separation of the graft from both ends and no sutures were visualised. The deep hypothermic technique has considerably improved the ease and safety of this operation. We attribute this complication to the reabsorption of the silk sutures. Patients after coarctectomy with graft material should have regular chest X-rays for life in order to detect false aneurys
Design and construction of the MicroBooNE Cosmic Ray Tagger system
The MicroBooNE detector utilizes a liquid argon time projection chamber
(LArTPC) with an 85 t active mass to study neutrino interactions along the
Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground
level, the detector records many cosmic muon tracks in each beam-related
detector trigger that can be misidentified as signals of interest. To reduce
these cosmogenic backgrounds, we have designed and constructed a TPC-external
Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for
High Energy Physics (LHEP), Albert Einstein center for fundamental physics,
University of Bern. The system utilizes plastic scintillation modules to
provide precise time and position information for TPC-traversing particles.
Successful matching of TPC tracks and CRT data will allow us to reduce
cosmogenic background and better characterize the light collection system and
LArTPC data using cosmic muons. In this paper we describe the design and
installation of the MicroBooNE CRT system and provide an overview of a series
of tests done to verify the proper operation of the system and its components
during installation, commissioning, and physics data-taking
Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE
The single-phase liquid argon time projection chamber (LArTPC) provides a
large amount of detailed information in the form of fine-grained drifted
ionization charge from particle traces. To fully utilize this information, the
deposited charge must be accurately extracted from the raw digitized waveforms
via a robust signal processing chain. Enabled by the ultra-low noise levels
associated with cryogenic electronics in the MicroBooNE detector, the precise
extraction of ionization charge from the induction wire planes in a
single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event
display images, and quantitatively demonstrated via waveform-level and
track-level metrics. Improved performance of induction plane calorimetry is
demonstrated through the agreement of extracted ionization charge measurements
across different wire planes for various event topologies. In addition to the
comprehensive waveform-level comparison of data and simulation, a calibration
of the cryogenic electronics response is presented and solutions to various
MicroBooNE-specific TPC issues are discussed. This work presents an important
improvement in LArTPC signal processing, the foundation of reconstruction and
therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at
arXiv:1802.0870
- …