485 research outputs found

    Synthesis and anticancer activity of CDDO and CDDO-me, two derivatives of natural triterpenoids

    Get PDF
    Triterpenoids are natural compounds synthesized by plants through cyclization of squalene, known for their weak anti-inflammatory activity. 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO), and its C28 modified derivative, methyl-ester (CDDO-Me, also known as bardoxolone methyl), are two synthetic derivatives of oleanolic acid, synthesized more than 20 years ago, in an attempt to enhance the anti-inflammatory behavior of the natural compound. These molecules have been extensively investigated for their strong ability to exert antiproliferative, antiangiogenic, and antimetastatic activities, and to induce apoptosis and differentiation in cancer cells. Here, we discuss the chemical properties of natural triterpenoids, the pathways of synthesis and the biological effects of CDDO and its derivative CDDO-Me. At nanomolar doses, CDDO and CDDO-Me have been shown to protect cells and tissues from oxidative stress by increasing the transcriptional activity of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2). At doses higher than 100 nM, CDDO and CDDO-Me are able to modulate the differentiation of a variety of cell types, both tumor cell lines or primary culture cell, while at micromolar doses these compounds exert an anticancer effect in multiple manners; by inducing extrinsic or intrinsic apoptotic pathways, or autophagic cell death, by inhibiting telomerase activity, by disrupting mitochondrial functions through Lon protease inhibition, and by blocking the deubiquitylating enzyme USP7. CDDO-Me demonstrated its efficacy as anticancer drugs in different mouse models, and versus several types of cancer. Several clinical trials have been started in humans for evaluating CDDO-Me efficacy as anticancer and anti-inflammatory drug; despite promising results, significant increase in heart failure events represented an obstacle for the clinical use of CDDO-Me

    Approach combining the Rietveld method and pairs distribution function analysis to study crystalline materials under high-pressure and/or temperature: Application to rhombohedral Bi2Te3 phase

    Full text link
    An approach combining the Rietveld method and pairs distribution function analysis to study crystalline materials under high pressure or temperature was early proposed by us, and in this study, it was applied to investigate de effect of high pressure on the rhombohedral Bi2Te3 phase. The refined structural parameters obtained from the Rietveld refinement of the XRD patterns measured for pressures up to 9.1 GPa were used as input data to simulate the partial and total structure factors SBiBi, SBiTe, STeTe, and SBi2Te3. Fourier transformation of the Sij factors permitted to obtain the partial and total pairs distribution functions GBiBi, GBiTe, GTeTe, and GBi2Te3. The first coordination shells of these Gij functions are formed by subshells and, with increasing pressure in the 1.1 to 6.3 GPa range, occur a partial separation of subshells. Also, the increase of pressure in this range promotes a drastic reduction in the values of the intralayer angles TeBiTe, and consequently, in the intralayer distance TeTe. A drastic reduction in the interlayers distance Te-Te was also observed. Several studies are reported in the literature, including one carried out by us, show the presence of an ETT in this pressure range. The obtained results suggest that the ETT is related with the decrease of the intralayer angles TeBiTe, and intra- and interlayer distance TeTe. Experimental results describing the pressure dependence the thermoelectric power, electrical resistivity, and power fator for rhombohedral Bi2Te3 are reported, and an enhancement of the power factor in the 1.1 to 6.3 GPa range is observed. The results obtained in this study give evidence that this enhancement in the power factor is related with the decrease of the intralayer angles TeBiTe, and with the decrease of intralayer- and interlayers homopolar TeTe bonds

    DNA Topoisomerase I differentially modulates R-loops across the human genome

    Get PDF
    Background: Co-transcriptional R-loops are abundant non-B DNA structures in mammalian genomes. DNA Topoisomerase I (Top1) is often thought to regulate R-loop formation owing to its ability to resolve both positive and negative supercoils. How Top1 regulates R-loop structures at a global level is unknown. Results: Here, we perform high-resolution strand-specific R-loop mapping in human cells depleted for Top1 and find that Top1 depletion results in both R-loop gains and losses at thousands of transcribed loci, delineating two distinct gene classes. R-loop gains are characteristic for long, highly transcribed, genes located in gene-poor regions anchored to Lamin B1 domains and in proximity to H3K9me3-marked heterochromatic patches. R-loop losses, by contrast, occur in gene-rich regions overlapping H3K27me3-marked active replication initiation regions. Interestingly, Top1 depletion coincides with a block of the cell cycle in G0/G1 phase and a trend towards replication delay. Conclusions: Our findings reveal new properties of Top1 in regulating R-loop homeostasis in a context-dependent manner and suggest a potential role for Top1 in modulating the replication process via R-loop formation

    A DNA Tool for the Identification of Heavily Exploited Atlantic Billfishes

    Get PDF
    Due to the morphological similarities among species, the International Commission for the Conservation of the Atlantic Tunas has recommended the use of diagnostic molecular tools to allow for robust species-level identifications of the billfishes. In this study, a protocol for the molecular identification of all six Atlantic billfishes was developed utilizing a PCR–RFLP approach, targeting the mitochondrial gene cytochrome c oxidase subunit 1. A survey of 28 restriction endonucleases identified two enzymes (TaqI and HaeIII) that produced species-specific banding patterns sufficient to distinguish species. The protocol was validated against billfishes captured across their Atlantic distributions

    Circulating and Tumor-Associated Neutrophils in the Era of Immune Checkpoint Inhibitors: Dynamics, Phenotypes, Metabolism, and Functions.

    Get PDF
    Neutrophils are the most abundant myeloid cells in the blood and are a considerable immunological component of the tumor microenvironment. However, their functional importance has often been ignored, as they have always been considered a mono-dimensional population of terminally differentiated, short-living cells. During the last decade, the use of cutting-edge, single-cell technologies has revolutionized the classical view of these cells, unmasking their phenotypic and functional heterogeneity. In this review, we summarize the emerging concepts in the field of neutrophils in cancer, by reviewing the recent literature on the heterogeneity of both circulating neutrophils and tumor-associated neutrophils, as well as their possible significance in tumor prognosis and resistance to immune checkpoint inhibitors
    • …
    corecore