35 research outputs found

    Evolutionary plasticity determination by orthologous groups distribution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic plasticity may be understood as the ability of a functional gene network to tolerate alterations in its components or structure. Usually, the studies involving gene modifications in the course of the evolution are concerned to nucleotide sequence alterations in closely related species. However, the analysis of large scale data about the distribution of gene families in non-exclusively closely related species can provide insights on how plastic or how conserved a given gene family is. Here, we analyze the abundance and diversity of all Eukaryotic Clusters of Orthologous Groups (KOG) present in STRING database, resulting in a total of 4,850 KOGs. This dataset comprises 481,421 proteins distributed among 55 eukaryotes.</p> <p>Results</p> <p>We propose an index to evaluate the evolutionary plasticity and conservation of an orthologous group based on its abundance and diversity across eukaryotes. To further KOG plasticity analysis, we estimate the evolutionary distance average among all proteins which take part in the same orthologous group. As a result, we found a strong correlation between the evolutionary distance average and the proposed evolutionary plasticity index. Additionally, we found low evolutionary plasticity in <it>Saccharomyces cerevisiae </it>genes associated with inviability and <it>Mus musculus </it>genes associated with early lethality. At last, we plot the evolutionary plasticity value in different gene networks from yeast and humans. As a result, it was possible to discriminate among higher and lower plastic areas of the gene networks analyzed.</p> <p>Conclusions</p> <p>The distribution of gene families brings valuable information on evolutionary plasticity which might be related with genetic plasticity. Accordingly, it is possible to discriminate among conserved and plastic orthologous groups by evaluating their abundance and diversity across eukaryotes.</p> <p>Reviewers</p> <p>This article was reviewed by Prof Manyuan Long, Hiroyuki Toh, and Sebastien Halary.</p

    Reactive Oxygen Species Production and Mitochondrial Dysfunction Contribute to Quercetin Induced Death in Leishmania amazonensis

    Get PDF
    BACKGROUND: Leishmaniasis, a parasitic disease caused by protozoa of the genus Leishmania, affects more than 12 million people worldwide. Quercetin has generated considerable interest as a pharmaceutical compound with a wide range of therapeutic activities. One such activity is exhibited against the bloodstream parasite Trypanosoma brucei and amastigotes of Leishmania donovani. However, the mechanism of protozoan action of quercetin has not been studied. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we report here the mechanism for the antileishmanial activity of quercetin against Leishmania amazonensis promastigotes. Quercetin inhibited L. amazonensis promastigote growth in a dose- and time- dependent manner beginning at 48 hours of treatment and with maximum growth inhibition observed at 96 hours. The IC(50) for quercetin at 48 hours was 31.4 µM. Quercetin increased ROS generation in a dose-dependent manner after 48 hours of treatment. The antioxidant GSH and NAC each significantly reduced quercetin-induced cell death. In addition, quercetin caused mitochondrial dysfunction due to collapse of mitochondrial membrane potential. CONCLUSIONS/SIGNIFICANCE: The effects of several drugs that interfere directly with mitochondrial physiology in parasites such as Leishmania have been described. The unique mitochondrial features of Leishmania make this organelle an ideal drug target while minimizing toxicity. Quercetin has been described as a pro-oxidant, generating ROS which are responsible for cell death in some cancer cells. Mitochondrial membrane potential loss can be brought about by ROS added directly in vitro or induced by chemical agents. Taken together, our results demonstrate that quercetin eventually exerts its antileishmanial effect on L. amazonensis promastigotes due to the generation of ROS and disrupted parasite mitochondrial function

    Model-Derived Dispersal Pathways from Multiple Source Populations Explain Variability of Invertebrate Larval Supply

    Get PDF
    Background: Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved. Methodology/Principal Findings: In this study we test whether dispersal and connectivity patterns generated from a biophysical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p,0.05) and strong, ranging from 0.34 to 0.81 at time lags of 26 to+5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r = 0.82, p,0.001, and r = 0.79, p,0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality. Conclusions/Significance: The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provid

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    Are poor responders patients at higher risk for producing aneuploid embryos in vitro?

    No full text
    Purpose To test the hypothesis that aged women with poor ovarian response express an increase on embryo chromosomal alterations when compared to aged women who presented normal response.Methods Couples undergoing intracytoplasmic sperm injection cycles with preimplantation genetic screening, were subdivided into two groups: Poor Responder group (n = 34), patients who produced a parts per thousand currency sign4 oocytes; and Normoresponder group (n = 50), patients who produced a parts per thousand yen5 oocytes. Groups were compared regarding cycles' outcomes and aneuploidy frequency.Results There were no significant differences between and groups regarding the fertilization rate (p = 0.6861), clinical pregnancy (p = 0.9208), implantation (p = 0.6863), miscarriage (p = 0.6788) and the percentage of aneuploid embryos (p = 0.270). Embryo transfer rate was significantly lower on poor responder group (p = 0.0128) and logistic regression confirmed the influence of poor response on the chance of embryo transfer (p = 0.016).Conclusions Aged females responding poorly to gonadotrophins are not at a higher risk for producing aneuploid embryos in vitro
    corecore