19 research outputs found

    Performing edge detection by difference of Gaussians using q-Gaussian kernels

    Get PDF
    In image processing, edge detection is a valuable tool to perform the extraction of features from an image. This detection reduces the amount of information to be processed, since the redundant information (considered less relevant) can be unconsidered. The technique of edge detection consists of determining the points of a digital image whose intensity changes sharply. This changes are due to the discontinuities of the orientation on a surface for example. A well known method of edge detection is the Difference of Gaussians (DoG). The method consists of subtracting two Gaussians, where a kernel has a standard deviation smaller than the previous one. The convolution between the subtraction of kernels and the input image results in the edge detection of this image. This paper introduces a method of extracting edges using DoG with kernels based on the q-Gaussian probability distribution, derived from the q-statistic proposed by Constantino Tsallis. To demonstrate the method's potential, we compare the introduced method with the traditional DoG using Gaussians kernels. The results showed that the proposed method can extract edges with more accurate details.Comment: 5 pages, 5 figures, IC-MSQUARE 201

    Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains

    Get PDF
    Ruiz JC, D'Afonseca V, Silva A, et al. Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains. PLoS ONE. 2011;6(4): e18551.Background: Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings: We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions: These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829

    Características físicas de solos salino-sódicos do semiárido pernambucano em função de diferentes níveis de gesso

    No full text
    Objetivou-se, com este trabalho, avaliar a eficiência da aplicação de diferentes níveis de necessidade de gesso sobre as características físicas de solos salino-sódicos da região semiárida de Pernambuco. O experimento foi realizado no Laboratório de Mecânica do Solo e Aproveitamento de Resíduos da Universidade Federal Rural de Pernambuco. Os tratamentos foram dispostos em delineamento em blocos casualizados com arranjo fatorial de dois solos (S1 e S2) e cinco níveis da necessidade de gesso (50, 100, 150, 200 e 250%) determinada pelo método de Schoonover M-1, incorporados aos primeiros 12,5 cm da coluna de solo, com cinco repetições. A utilização de níveis crescentes de gesso para a correção de solos salino-sódicos proporcionou maior taxa de infiltração de água nos solos. O nível de 100% da necessidade de gesso promoveu menor grau de dispersão e maior estabilidade de agregados dos solos. No decorrer do experimento pôde-se observar, a partir do nível de 150% da necessidade de gesso, ocorreu perda de coloides (mineral e/ou orgânico)
    corecore