14 research outputs found

    Evidence of a noncoding transcript of the RIPK2 gene overexpressed in head and neck tumor

    Get PDF
    Receptor-interacting proteins are a family of serine/threonine kinases, which integrate extra and intracellular stress signals caused by different factors, including infections, inflammation and DNA damage. Receptor-interacting serine/threonine-protein kinase 2 (RIP-2) is a member of this family and an important component of the nuclear factor NF-kappa-B signaling pathway. The corresponding human gene RIPK2 generates two transcripts by alternative splicing, the full-length and a short transcript. The short transcript has a truncated 5? sequence, which results in a predicted isoform with a partial kinase domain but able to transduce signals through its caspase recruitment domain. In this study, the expression of RIPK2 was investigated in human tissue samples and, in order to determine if both transcripts are similarly regulated at the transcriptional level, cancer cell lines were submitted to temperature and acid stresses. We observed that both transcripts are expressed in all tissues analyzed, with higher expression of the short one in tumor samples, and they are differentially regulated following temperature stress. Despite transcription, no corresponding protein for the short transcript was detected in tissues and cell lines analyzed. We propose that the shorter transcript is a noncoding RNA and that its presence in the cell may play regulatory roles and affect inflammation and other biological processes related to the kinase activity of RIP-2.Fil: Mancini Villagra, Ulises Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: da Cunha, Bianca R.. Universidade de Sao Paulo; BrasilFil: Polachini, Giovana M.. No especifíca;Fil: Tiago, Tiago Henrique. No especifíca;Fil: Carlos H. T. P. da Silva. Universidade de Sao Paulo; BrasilFil: Feitosa, Olavo A.. Universidade de Sao Paulo; BrasilFil: Fukuyama, Erica E.. Arnaldo Vieira de Carvalho Cancer Institute; BrasilFil: López, Rossana V. M.. No especifíca;Fil: Dias Neto, Emmanuel. Universidade de Sao Paulo; BrasilFil: Nunes, Fabio D.. Universidade de Sao Paulo; BrasilFil: Severino, Patricia. Hospital Israelita Albert Einstein; BrasilFil: Tajara, Eloiza Helena Tajara. Universidade de Sao Paulo; Brasi

    Evidence of a noncoding transcript of the RIPK2 gene overexpressed in head and neck tumor

    Get PDF
    Receptor-interacting proteins are a family of serine/threonine kinases, which integrate extra and intracellular stress signals caused by different factors, including infections, inflammation and DNA damage. Receptor-interacting serine/threonine-protein kinase 2 (RIP-2) is a member of this family and an important component of the nuclear factor NF-kappa-B signaling pathway. The corresponding human gene RIPK2 generates two transcripts by alternative splicing, the full-length and a short transcript. The short transcript has a truncated 5’ sequence, which results in a predicted isoform with a partial kinase domain but able to transduce signals through its caspase recruitment domain. In this study, the expression of RIPK2 was investigated in human tissue samples and, in order to determine if both transcripts are similarly regulated at the transcriptional level, cancer cell lines were submitted to temperature and acid stresses. We observed that both transcripts are expressed in all tissues analyzed, with higher expression of the short one in tumor samples, and they are differentially regulated following temperature stress. Despite transcription, no corresponding protein for the short transcript was detected in tissues and cell lines analyzed. We propose that the shorter transcript is a noncoding RNA and that its presence in the cell may play regulatory roles and affect inflammation and other biological processes related to the kinase activity of RIP-2.Instituto de Biotecnologia y Biologia Molecula

    Polymorphisms IL10-819 and TLR-2 are potentially associated with sepsis in Brazilian patients

    No full text
    Genetic variation in immune response is probably involved in the progression of sepsis and mortality in septic patients. However, findings in the literature are sometimes conflicting or their significance is uncertain. Thus, we investigated the possible association between 12 polymorphisms located in the interleukin-6 (IL6), IL10, TLR-2, Toll-like receptor-4 (TLR-4), tumor necrosis factor-α and tumor necrosis factor-β (lymphotoxin α - LTA) genes and sepsis. Critically ill patients classified with sepsis, severe sepsis and septic shock and 207 healthy volunteers were analyzed and genotyped. Seven of the nine polymorphisms showed similar distributions in allele frequencies between patients and controls. Interestingly, our data suggest that the IL10-819 and TLR-2 polymorphisms may be potential predictors of sepsis.

    ORAOV1 is amplified in oral squamous cell carcinoma

    No full text
    BACKGROUND: Oral cancer overexpressed 1 (ORAOV1) was found as a candidate oncogene in the 11q13 chromosomal region, based on its amplification and overexpression in oral cancer cell lines. Because gene amplification often leads to increased levels of gene expression, we aimed to verify the relationship between ORAOV1 gene status and mRNA expression primarily in oral squamous cell carcinoma (OSCC) by quantitative assay, correlating with clinical and pathological characteristics in patients. METHODS: Levels of ORAOV1 amplification and expression were evaluated by qPCR and RT-qPCR in OSCC cell lines and in tumor and non-tumoral surgical margins from 33 patients with OSCC. All subjects were smokers and habitual alcohol drinkers, mostly men above 40 years of age and with a single primary tumor. RESULTS: ORAOV1 exhibited increased gene expression levels as well as higher copy number in three OSCC cell lines with 11q13 amplified chromosomal region when compared with the OSCC cell line without the amplification (one-way ANOVA, P < 0.05). Weak correlation between ORAOV1 mRNA levels and DNA copy number was seen in tumor samples (Spearman, P = 0.07). Although ORAOV1 was amplified in tumor (Wilcoxon, P < 0.01), high levels of transcripts in margin did not reveal differences in comparison with tumor (Wilcoxon, P = 0.85). Aggressiveness and survival rate did not demonstrate statistical difference for both events in OSCC. CONCLUSION: The overexpression of ORAOV1 in non-tumoral margin samples can occur in the absence of amplification. The weak correlation between ORAOV1 amplification and expression in OSSC suggests that ORAOV1 expression can be regulated by mechanisms other than gene amplification. J Oral Pathol Med (2012) 41: 5460Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)GENCAPO ConsortiumGENCAPO Consortiu

    Epigenetic Silencing of CRABP2 and MX1 in Head and Neck Tumors12

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease affecting the epithelium of the oral cavity, pharynx and larynx. Conditions of most patients are diagnosed at late stages of the disease, and no sensitive and specific predictors of aggressive behavior have been identified yet. Therefore, early detection and prognostic biomarkers are highly desirable for a more rational management of the disease. Hypermethylation of CpG islands is one of the most important epigenetic mechanisms that leads to gene silencing in tumors and has been extensively used for the identification of biomarkers. In this study, we combined rapid subtractive hybridization and microarray analysis in a hierarchical manner to select genes that are putatively reactivated by the demethylating agent 5-aza-2′-deoxycytidine (5Aza-dC) in HNSCC cell lines (FaDu, UM-SCC-14A, UM-SCC-17A, UM-SCC-38A). This combined analysis identified 78 genes, 35 of which were reactivated in at least 2 cell lines and harbored a CpG island at their 5′ region. Reactivation of 3 of these 35 genes (CRABP2, MX1, and SLC15A3) was confirmed by quantitative real-time polymerase chain reaction (PCR; fold change, ≥3). Bisulfite sequencing of their CpG islands revealed that they are indeed differentially methylated in the HNSCC cell lines. Using methylation-specific PCR, we detected a higher frequency of CRABP2 (58.1% for region 1) and MX1 (46.3%) hypermethylation in primary HNSCC when compared with lymphocytes from healthy individuals. Finally, absence of the CRABP2 protein was associated with decreased disease-free survival rates, supporting a potential use of CRABP2 expression as a prognostic biomarker for HNSCC patients

    Identification and complete sequencing of novel human transcripts through the use of mouse orthologs and testis cDNA sequences

    No full text
    The correct identification of all human genes, and their derived transcripts, has not yet been achieved, and it remains one of the major aims of the worldwide genomics community. Computational programs suggest the existence of 30,000 to 40,000 human genes. However, definitive gene identification can only be achieved by experimental approaches. We used two distinct methodologies, one based on the alignment of mouse orthologous sequences to the human genome, and another based on the construction of a high-quality human testis cDNA library, in an attempt to identify new human transcripts within the human genome sequence. We generated 47 complete human transcript sequences, comprising 27 unannotated and 20 annotated sequences. Eight of these transcripts are variants of previously known genes. These transcripts were characterized according to size, number of exons, and chromosomal localization, and a search for protein domains was undertaken based on their putative open reading frames. In silico expression analysis suggests that some of these transcripts are expressed at low levels and in a restricted set of tissues
    corecore